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Abstract—As a representative Low Power Wide Area Net-

work (LPWAN) technology, LoRa is expected to connect de-

vices for various Internet of Things (IoT) applications. Many

IoT applications require both long-range communications and

high precise sensing at the same time, while state of the art

approaches fail to achieve this. We propose LoSense, which

enables LoRa movement sensing alongside the regular data

transmissions. LoSense recovers the fine-grained trajectory of a

LoRa transmitter only based on its communication signals during

the data transmission period. We address practical challenges

for LoSense designs. We propose the active tracking model for

detecting movements of active LoRa transmitters. We use dual

antennas at the receiver to eliminate synchronization offsets

between LoRa transmitters and the receiver. We design feature

amplification and signal enhancement schemes to combat noise

and interference. We prototype LoSense with commodity LoRa

transmitters and USRP receivers, and extensively evaluate its

performance. The results show that LoSense tracks movements

of active LoRa transmitters with 2.32 cm distance accuracy and

0.089 Hz frequency accuracy from a sensing range of 150m,

supporting regular data communication at the same time.

I. INTRODUCTION

As a promising Low Power Wide Area Network (LPWAN)
technique, LoRa is expected to provide services for various
Internet of Things (IoT) applications such as smart agri-
culture [1], industrial automation [2], supply chain manage-
ment [3], etc. Many IoT applications require both high per-
formance sensing and wireless communications. For example,
in the drone navigation system, the controller needs to track
the real-time movement of the drone during its data commu-
nication. Therefore, the controller can dynamically adjust the
communication parameters, such as the transmitting power and
coding rates, according to the orientation and distance changes
of the drone. Most existing sensing and communication sys-
tems are designed separately and operate in isolated frequency
bands. This leads to more competition on the scarce wireless
spectrum and also increases the power consumption of end
devices. In this paper, we ask the question - “Can we achieve
simultaneous long-range sensing and communication on low-
cost IoT devices by analyzing patterns and characteristics of
LoRa signals?”

The main advantages of LoRa are low power consump-
tion and long communication range. A typical LoRa device
with the LoRaWAN protocol can communicate over several
kilometers, and has a battery life for nearly 10 years [4].
These properties make LoRa feasible to cover a large area

with a low deployment cost. Owing to the wide coverage and
low deployment cost, much research has been proposed for
exploring the sensing ability of LoRa signals. These works
can be classified into two categories: 1) Localization. Many
research works focus on obtaining the location information by
exchanging signals between active LoRa devices or passive
backscatter tags. Typical techniques for LoRa localization
involves Time Difference of Arrival (TDoA) [5]–[7], Received
Signal Strength Indicator (RSSI) [8], [9], phase or Channel
State Information (CSI) [10], [11], and fingerprinting [12].
The LoRa localization approaches require packets exchanging
between multiple devices and take a long processing time.
Therefore, they cannot support real-time movement tracking
applications. 2) Passive tracking. Recent literatures propose
passive tracking by analyzing RF signals reflected by target
objects. These techniques are usually used to detect human
activities, such as breathing, heart beating, and walking [13]–
[15]. However, the passive tracking requires the transmitters
to generate signals in specific forms, and cannot support
communicate simultaneously with sensing.

Fundamental limitations. All previous LoRa sensing tech-
niques require dedicated signals with known frequencies and
phases. They cannot perform wireless sensing alongside com-
munication signals. Thus, these systems are not suitable for
low-cost and low-power LoRa, as they increase the spectrum
occupation and burden the node energy consumption with
separated sensing and communication systems.

Limitations of previous research motivate us to rethink the
design LoRa sensing methods. We propose LoSense, a high-
precise LoRa sensing technique that tracks the movement
of LoRa devices alongside its normal data communication.
Instead of providing absolute position tracking in continuous
time, LoSense senses the relative movement of a device
during each of its intermittent transmissions. LoSense is useful
in many IoT applications that need movement tracking at
the same time of data communication. For example, in the
scenario of wireless communication with moving devices, e.g.,
drones and boats, the network controller can adopt the LoSense
movement tracking for dynamically adjusting the transmis-
sion parameters, e.g., coding rate and transmitting power, or
scheduling perfect time for the next transmission. Previous
literatures show the effectiveness of using the information
of transmitter movements for improving the communication
performance [16]. To track the movement of LoRa nodes,
LoSense exploits to extract the phase information from low-979-8-3503-0322-3/23/$31.00 ©2023 IEEE



SNR LoRa signals. We implement LoSense with commodity
LoRa transmitters and USRP receivers without hardware mod-
ification on the LoRa node. Therefore, LoSense can be easily
applied on existing LoRa devices.

Taking the idea of LoSense into practice, however, still
faces challenges: 1) How to build the tracking model for low-
power active LoRa devices: Previous wireless tracking with
the passive signal reflection is inapplicable for LoRa device
tracking with active communication signals. We propose a
dual-antenna receiver based tracking model that uses an idle
node in the same network as the helper node for detecting
the movement of the target transmitter. 2) No clock synchro-
nization: LoRa does not provide synchronization between end
nodes and gateways, which leads to carrier frequency offsets
and sample frequency offsets in the received signal. Extracting
clean phases for device tracking with such signals can be very
challenging. We propose the offset elimination strategy with
the dual-antenna receiver to solve the synchronization prob-
lem. 3) Tracking against noise and interference: Long-range
communication with strong signal attenuation and interference
results in LoRa signals below the noise floor. We propose
a signal enhancement method by energy accumulation and
outliers elimination to extract signal features against strong
noise and interference.

We implement LoSense with LoRa transmitters and USRP
receivers, and conduct extensive experiments to evaluate its
performance. Our results show that LoSense achieves long-
range and high-precise active device tracking while supporting
data communications. In summary, our contributions are as
follows:

• We propose LoSense, an active tracking system that inte-
grated long-range sensing and data communication at the
same time.

• We analyze the active tracking model for LoRa signals. We
address the synchronization offsets between LoRa devices
by introducing the dual-antenna receiver. We propose the
anti-noise design with energy accumulation and outlier elim-
ination that enables accurate LoRa tracking with extremely
low-SNR signals.

• We implement LoSense with COTS LoRa transmitter and
USRP software defined radios. We carry out extensive
experiments to evaluate its performance in both indoor and
outdoor scenarios. The results show that LoSense tracking
achieves 2.32cm distance accuracy and 0.089Hz frequency
accuracy at the sensing range of 150m and supports regular
data communication at the same time.

The rest of the paper is organized as follows: §2 introduces
the preliminaries of LoRa. §3 discusses realistic requirements
for applying long-range sensing in LoRa. We present the active
tracking model in §4 and the combating noise design in §5.
§6 presents implementation details and §7 shows evaluation
results. §8 discusses the related works. We conclude LoSense
and discuss future works in §9.
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Fig. 1. Spectrogram of LoRa physical layer signals: (a) an up-chirp with
increasing frequencies; (b) an encoded chirp with the shifted initial frequency;
(c) a down-chirp with decreasing frequencies

II. LORA PRIMER

LoRa PHY. LoRa leverages Chirp Spreading Spectrum (CSS)
at the physical layer, where signals are modulated into chirps
whose frequencies change linearly with time. Key parameters
for LoRa chirp modulation include bandwidth (BW ), and
spreading factor (SF ), which determine data rates of LoRa
transmissions. Thus, a chirp symbol can be mathematically
represented as:

C(t) = e
j2π(−BW

2 t+ k
2 t

2)
, 0 ≤ t < T (1)

where T = 2SF /BW is the duration of a chirp, and k = BW/T

is the slope of the varying frequency over time. A chirp with
a positive k has the frequency increasing with time, which
is named up-chirp as shown in Figure. 1(a). On the contrary,
a chirp with decreasing frequencies is named down-chirp as
shown in Figure. 1(c). Both the up-chirp and the down-chirp
are used in the LoRa preamble for packet synchronization at
the receiver. LoRa modulates data bits by cyclically shifting
the initial frequency of up-chirp, as shown in Figure 1(b).
Packet structure. A LoRa packet is composed of a preamble,
an optional header, a payload and a two-byte CRC calculated
from the payload data. The preamble consists of a varied num-
ber of base chirps, followed by a two-chirp synchronization
word and 2.25 down chirps as a Start Frame Delimiter (SFD).
A LoRa radio detects a packet by detecting the presence of
LoRa preamble and uses the preamble for frame synchroniza-
tion. Upon detecting a preamble, a receiver detects SFD to
identify the start of payload and next demodulate and decode
the payload. The CRC will be checked by a receiver to validate
the integrity of received data.
ISAC in LoRa. Much recent research pays close attention to
the integrated sensing and communication (ISAC) [17], [18]
which enables the entire communications network to serve
as a sensor. With ISAC, we can sense the device movement
alongside the LoRa communication signals. The radio wave
transmissions, reflections, and scattering can be used to sense
and better understand the motion state of LoRa devices.
Meanwhile, we can adjust the LoRa parameters, such as the
physical layer data rate and the antenna orientation, according
to the real-time motion state of the transmitter, to optimize the
network transmission performance.
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Fig. 2. CFO fluctuation: (a) CFO on a single transmitter over one-minute
transmissions, (b) CFO variation for different hardwares.

III. REQUIREMENTS FOR LORA SENSING

There are several realistic requirements we have to meet for
applying the long-range sensing in LoRa.

(i) CFO elimination: We sense the movement of a LoRa
transmitter by extracting the motion-related phase from its
communication signals. However, the oscillators of low-cost
LoRa nodes are usually unsynchronized, leading to carrier
frequency offsets (CFO) between the transmitter and receiver.
The CFO introduces a time-varying phase in the received
signal, which is confused with the movement-induced phase
change, leading tracking errors. To accurately sense the move-
ment of a LoRa transmitter, we have to eliminate the impact of
the CFO on phase tracing of the received signal. We propose
a two-antenna receiving model to remove impacts of the time-
varying CFO on the received signal.

(ii) Feature amplification: In the far-field LoRa networks, the
distance of device movement is much less than the communi-
cation ranges. The phase features by the transmitter movement
are inconspicuous at the receiver. For high-sensitive movement
tracking, we have to amplify the phase features for the received
signal. We introduce an idle node in the same network as the
helper transmitter that sends LoRa signals alongside the target
node. Signals of the two nodes superpose over the air, leading
to amplification of phase variation at the receiver. We propose
a complete theoretical proof to show why the helper node can
amplify the phase features in § IV-B. A node can act as a
helper as long as it is static and its signal can reach the same
receiver as the target node. Thus, one helper node can serve
a large number of other nodes in the same network, making
LoSense scalable.

(iii) Sensing bellow the noise floor: The SNR of LoRa can be
below the noise floor due to long-range communication with
strong signal attenuation, interference and complex multi-path.
For tracking the movement of long-range LoRa transmitters,
we propose signal enhancement method to extract signal
features even bellow the noise floor. We analyze the impact
of signal multi-path in LoRa movement tracking, and propose
a realistic method to eliminate its influence by adjusting the
orientation of receiving antennas.

IV. TRACKING MODEL

A. Phase Variation Detection

We track the movement of a LoRa node by detecting the
phase variation of its transmitted signal. Intuitively, we can
track the distance between the transmitter and the receiver by
detecting the phase variation with a single receiving antenna,
as shown in Figure 3(a). Considering a signal s(t) is trans-
mitted over a single Line-of-Sight (LOS) path, the received
signal becomes

R(t) = a · s(t) · e−j
2πd(t)

λ (2)

where a is the signal attenuation, λ is the wave length, and
d(t) is the propagation distance that varies over time.

Theoretically, the distance variation between the transmitter
and the receiver (i.e., d(t)) can be estimated by extracting
the path-induced phase from the received signal. However,
in practice, the local oscillators of the transmitter and the
receiver are unsynchronized, inducing a Carrier Frequency
Offset (CFO) between the two devices. Therefore, the received
signal becomes

R(t) = a · s(t) · e−j
2πd(t)

λ +2π∆ft

where 2π∆ft is the phase variation introduced by the CFO.
To extract the distance-related phase vibration, we have to
eliminate the effect of the CFO.

Previous work proposes to combat the CFO-induced phase
error by measuring the CFO beforehand and calibrating it in
the phase tracking [15]. Such an idea, however, has significant
cumulative errors in long-term tracking, as the CFO has
incapable jitter in long run. Its effect on phase variation is
coupled with that induced by Tx’s vibration, therefore it’s
difficult to calibrate the error caused by CFO in long run.
Figure 2 shows the CFO jitter between commodity LoRa
transmitters and a USRP receiver. we set two stationary USRP
N210 as Tx and Rx, separated by 1 meter, and observe the
CFO change within 1 minute. The result is shown in Figure
2(b). We configure each transmitter to send 50 LoRa packets
in one minute and estimate the CFO in each received packet.
Our evaluation on real LoRa transmitters shows that the CFO
of a single device varies about 50 Hz in one minute, which
introduces phase errors up to 1.89 × 104 rad, corresponding
to a distance error of 9.83 m.

To combat the challenge of synchronization between the
LoRa transmitter and receiver, we use a dual-antenna receiver
for phase detection. As shown in Figure 3(b), the receiver is
equipped with two antennas that share the same clock. Denote
the transmitted signal as s(t), the propagation distance to the
two antennas are d1(t) and d2(t), respectively. We model the
received signal at the two antennas as:

Ri(t) = aie
−j

2πdi(t)

λ +∆ft ∗ s(t) = Di(t)s(t), i = 1, 2 (3)

where D1(t) and D2(t) denotes the dynamic channel between
the transmitter and the two receiving antennas. Both D1(t)
and D2(t) are related to the CFO between the transmitter and
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Fig. 3. Models for active sensing: (a) single-antenna model; (b) dual-antenna model; (c) LoSense with concurrent transmissions from a helper node.

the receiver. Therefore, we eliminate the impact of CFO by
dividing R1(t) by R2(t), and finally obtain the signal ratio
SR(t) as

SR(t) =
R1(t)

R2(t)
=

D1(t)

D2(t)
=

a1

a2
· e−j

2π
λ (d1(t)−d2(t)) (4)

Through the signal dividing, phase errors introduced by the
CFO are all canceled out. The phase of the SR(t) is only
related to the path difference of the two receiving antennas.
Thus, we can estimate the movement of the signal transmitter
by detecting the phase variation of SR(t).

B. Phase Feature Amplification

Now, we have eliminated the CFO impact in the received
signal. We then detect the movement induced phase variation
from the signal ratio SR(t). In the real-world deployment,
the signal paths to the two receiving antennas can be very
similar, resulting in very small phase variations corresponding
to path differences (i.e., d1(t) is similar to d2(t)). To accurately
recover the phase variation of SR(t), we have to amplify the
phase features of the received signal.

We first explain why the phase variation of SR(t) is
diminutive and difficult to detect. For theoretical illustration,
we set both the transmitter and the dual-antenna receiver in
a Cartesian coordinate system, as shown in Figure 4. The
distance between the two receiving antennas is d, and the
initial position of the transmitter is P : (l cos θ, l sin θ), where
l is distance between P and the origin point, and θ is the polar
angle of P to the positive X-axis.

We stipulate the maximum moving range of the transmitter
along the direction from the origin to P is A. In the far-
field tracking scenario, we can assume that the spacing of
the two receiving antennas and the device movement range is
much smaller than the distance between the transmitter and
the receiver, i.e., l >> A and l >> d.

Therefore, the path difference to the two receiving antennas
for the transmitter at P1 becomes

∆s
(1) ≈d cos θ1 ≈ d

2

l − A

2

(5)

Similarly, the path difference when the transmitter is at posi-
tion P2 can be presented as ∆s

(2) ≈ d
2

l+A
2

. Given the maxi-
mum moving range A of the transmitter, the path difference
for the two receiving antennas is in a range of [∆s

(2)
,∆s

(1)].
Thus, the maximum phase variation of SR(t) is calculated as

max∆ϕSR =
2π

λ
(∆s

(1) −∆s
(2)) ≈ 2π

λ

d
2

l2
A (6)

Eq. 6 shows that the phase variation of SR(t) is very small
in the far-field scenario, which tends to be masked in noise,
causing high errors in phase tracking.

We introduce a static helper node for amplifying the phase
features, as shown in Figure 3(c). For effective feature ampli-
fication, the signals of the helper node should arrive at the
receiver almost simultaneously as the target node with the
same content. The helper node and the target node does not
need to be physically adjacent. To promise that the helper
node sends the desired synchronized signal, we present a time
and frequency synchronization scheme, where a LoRa gateway
broadcasts beacons and the helper node adjusts its time and
carrier frequency based on the reception.

Denote the static channel between helper node and two
receiving antennas as S1 and S2 respectively, then the received
signal of the two antennas becomes

Ri(t) = Sis(t) +Di(t)s(t), i = 1, 2 (7)

The ratio of these two signals becomes

SR(t) =
R1(t)

R2(t)
=

S1 + a1e
−j

2πd1(t)
λ

S2 + a2e
−j

2πd2(t)
λ

(8)

Previously, we have proved that the path difference of d1(t)
and d2(t) is almost unchanged in the far-field scenario. Thus,
we denote d1(t) as d2(t) minus a constant value ∆s. To
simplify Equation 8, we define four constants as follows:

a := a1e
−j

2π∆s
λ , b := S1, c := a2, d := S2, η(t) = e

−j
2πd2(t)

λ

Then, we plug the four values into Eq 8 and transform the
equation into a simplified form as
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SR(t) =
b+ aη(t)

d+ cη(t)
=

bc− ad

c

1

cη(t) + d
+

a

c
(9)

In the complex plane, η forms an arc if the variation of d2(t)
is less than a wavelength, as shown in Figure 5. The phase
change of this arc represents the change of d2(t), containing
the moving distance of the target.

The SR(t) in Eq. 9 applies rotation (multiplication), trans-
formation (addition) and inversion to the arc η(t). Essentially
all the above can be treat as Möbius Transformation [19],
which only changes an arc’s position and size, but keeps its
shape (i.e., α and β are equal in Figure 5). Therefore, we can
recover d2(t) by estimating the central angle of the amplified
curve (i.e., β) in the I/Q plane.

To show the effectiveness of the phase feature amplification,
we revisit the example in Figure 4. When the transmitter is
at point P1, denote the path length between the transmitter
and the first receiving antenna is d

(1)
1 . When the transmitter is

at point P2, the corresponding length is d
(2)
1 . The maximum

phase variation of SR(t) now becomes

2π

λ
(d

(2)
1 −d

(1)
1 ) ==

2π

λ
((l +

A

2
)− (l − A

2
)) =

2π

λ
A

(10)
Comparing Eq. 10 with Eq. 6, by introducing a static neighbor
node, we amplify the phase variation of signal ratio SR(t)

from 2π
λ

d
2

l2
·A to 2π

λ ·A.

C. Trajectory Extraction

This section describes how to extract the trajectory of the
transmitter from the extracted phase features. We first focus on
one-dimensional distance tracking. As described in Sec. IV-B,
by dividing the signals received at the two antennas, we obtain
an arc-shaped curve SR(t). As shown in Figure 5, the Möbius
transformation keeps the central angle of the arc (i.e., α = β).
Therefore, we can compute the central angle of SR(t) and get
the phase variation of η(t). Assume the target starts moving
at time t1 and stops at time t2, taking η(t) = e

−j
2πd2(t)

λ into
consideration, we can obtain the moving distance:

I

Q

η(t) = exp(−j
2π
λ

d2(t))η(t) = exp(−j
2π
λ

d2(t)) 
ββ

SR(t)αα
Möbius

Transformationt1
t2 t1

t2

Fig. 5. Phase feature amplification by samples transformation in the I/Q plane

d2(t2)− d2(t1) =
λ

2π
(∠η(t2)− ∠η(t1)) =

λ

2π
α (11)

When time period between t1 and t2 approaches to zero,
we can obtain the instantaneous movement and directional
speed of the transmitter, i.e., the trajectory of the device in
one dimension direction. Further, if the transmitter moves
periodically, e.g., vibration, we can recover the frequency of
the movement. To achieve this, we perform the Fast Fourier
Transform (FFT) on signal ratio samples, i.e., SR(t) in Eq. 9.
Then, we extract the highest peak from the Fourier transform
output, where the index of the peak reflects the frequency
of the periodical movement. To track the transmitter in a
2-dimension plane, we need at least two receivers to track
the movement of the transmitter in two different directions.
We extract one-dimension trajectory from the two receivers,
respectively. Then, giving the movement along the two direc-
tions, we can apply a geometry model described in [20] to
track the 2-D trajectory of the transmitter.

V. DEAL WITH LOW-SNR LORA SIGNAL

A. Energy Accumulation

We propose an energy accumulation strategy to combat the
impact of channel noise. Our key observation is that the energy
of a whole chirp can be accumulated for estimating its initial
phase. As shown in Figure 6, the received chirp R(t) falls into
a decoding window. We denote the phase of the beginning
sample in this window as the initial phase. We apply the FFT
on the dechirped signal, which results in both an amplitude
spectrum and a phase spectrum in the frequency domain. The
peak position of the amplitude spectrum has its counterpart in
the phase spectrum, whose value is the initial phase of signals
in that window.

We now illustrate why the value in the phase spectrum is the
initial phase of the corresponding signal. Assume the initial
phase of R(t) in the decoding window is φ. For signal in
the decoding windows, we perform dechirp by multiplying
the signal with a standard down-chirp whose initial phase is
0. After dechirp, we obtain a single-tone signal D(t) whose
initial phase is φ, i.e., D(t) = e

j2πfct+φ. Then, we perform
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Algorithm 1 Outliers Elimination
Input :

n signal ratio I/Q samples s[1], s[2], · · · , s[n]
Output :

n outlier-eliminated samples s
′[1], s′[2], · · · , s′[n]

1: s
′[1] ⇐ s[1]

2: s
′[n] ⇐ s[n]

3: for each i ∈ [2, n− 1] do
4: if abs(angle(s[i])− angle(s′[i− 1])) ≥ π

2 then
5: θ = (angle(s′[i− 1]) + angle(s[i+ 1]))/2
6: s

′[i] ⇐ abs(s[i]) ∗ ejθ
7: else
8: s

′[i] ⇐ s[i]
9: end if

10: end for

FFT on D(t) to transform the signal from time domain to the
frequency domain as follows

F(f) =

N−1!

n=0

D(
n

N
T )e−j2πfn =

N−1!

n=0

e
j2π( T

N fc−f)n+φ (12)

We detect the energy peak from the FFT output as |F( T

N
fc)|.

Its counterpart in the phase spectrum ∠
"
F( T

N
fc)

#
= φ is

exact the initial phase of R(t) in the time domain. By energy
accumulation, we leverage the information of all samples in
a chirp as in Eq. 12. Therefore, the estimated phase values
are more robust to channel noises compared to directly using
initial phase from the time domain. This idea requires the
movement distance between two adjacent chirps no longer
than a wavelength. For nodes moving with a high speed, we
can shorten the chirp duration by using higher bandwidth or
lower SF. Besides, we can also use short windows for energy
concentration, e.g., using windows of half a chirp, thus to
tracking targets with high-speed movements.

From the scheme above, we can see As long as the node
movement does not exceed half of the wavelength within
a chirp duration, our system will work well for multiple
wavelength. We obtain a tracking sample by concentrating
the energy of a whole LoRa chirp. For nodes moving with

I

Q

(Ox, Oy)(Ox, Oy)

(Ii, Qi)(Ii, Qi)
R

SR(t)

Fig. 7. Outlier elimination based circle fitting for samples in the I/Q plane.

a high speed, we can shorten the chirp duration to improve
the sampling rate for movement tracking, and to achieve this
we can use higher bandwidth or lower SF. Apart from that,
we can also use short windows for energy concentration, e.g.,
using windows of half a chirp, thus to achieve higher sampling
rates for high-speed movements.

B. Alleviate the Impact of Noise

Ideally, after energy accumulation, the resulted SR(t)
should be a series of samples that has continuous phases in the
I/Q plane, as shown in Figure 5. In practice, there are outliers
far from the ideal arc due to the channel noise, as shown in
Figure 7. To tackle with this problem, we apply a time-ordered
sample filtering strategy, as described in Algorithm 1. This
algorithm takes signal ratio samples (i.e., SR(t)) as the input,
and output a sequence of outlier-eliminated samples. The key
idea of the algorithm is to identify and remove outlier samples
by comparing the phases for each pair of adjacent samples.
The angle function in the algorithm computes the unwrapped
phase, which means the difference of computed phases for
two adjacent samples should be less than π.

In addition to the outliers detection and elimination, we
further propose a circle fitting scheme to reduce the residual
impacts of channel noise. Denote the ideal circle has the center
coordinate of (Ox,Oy), and a radius of R. The samples from
the outlier eliminate algorithm output is I1, I2, · · · , In and
Q1, Q2, · · · , Qn. To fit these samples on the ideal circle, we
have to solve the following problem

min
{Ox,Oy,R}

{
n!

i=1

(dist[(Ox,Oy), (Ii, Qi)]
2 −R

2)2}

= min
{Ox,Oy,R}

{
n!

i=1

[(Ox− Ii)
2 + (Oy −Qi)

2 −R
2]2}

(13)

where dist(P1, P2) denotes the 2-D Euclidian distance be-
tween two points P1 and P2. We leverage a Matlab function
nlinfit [21] for this non-linear regression problem, and thus
reduce the impact of random I/Q shifts on LoSense.
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Fig. 8. Indoor experiment settings in the hallway of an office building.

VI. IMPLEMENTATION

We prototype LoSense with a moving LoRa transmitter, a
static helper node, and a two-antenna receiver. We perform
one-dimensional distance tracking in the evaluation with a
single receiver. Position tracking in 2D or 3D space can be
achieved by using multiple receivers as described in Sec. IV-C.
The LoSense transmitter and the helper node are implemented
on COTS LoRa nodes with SX1276 [22] that send standard
LoRa packets continuously. The receiver is implemented with
the USRP X310 software defined radio, which has two sepa-
rate radio front ends sharing the same clock. The USRP at the
receiver is connected to a PC with an Intel Core i9-12900H
CPU and 16GB RAM via Ethernet cables, which collects and
demodulates physical samples of arrived LoRa packets. We use
the collected signal samples for tracking the distance variation
from the transmitter and evaluating fine-grained distance and
frequency tracking errors. Both the LoSense transmitter and
receiver use Laird S9028PCR directional antennas with a 9 dB
gain. The helper node uses an omni-directional antenna with
a 2 dB gain. For component-level evaluation, we implement a
LoSense transmitter on a USRP N210 software defined radio
and connect the helper node to the LoSense transmitter via
a splitter to promise that both the two transmitters send the
same signal. We employ UHD + GNU-Radio library [23] to
generate LoRa signals, and use MATLAB to process received
samples. It should be noted that LoSense can be totally
implemented in COTS LoRa transmitters instead of the USRP.
The implementation on USRP is mainly for micro-benchmarks
evaluation.

We evaluate LoSense with both an indoor testbed and
a campus-scale testbed. During the distance tracking, we
demodulate every LoRa packet at the receiver and evaluate
both packet delivery rates and bit error rates for showing the
impact of device tracking on communication. Unless specified
otherwise, packets in our evaluations are generated with SF12,
125 kHz bandwidth and 915 MHz carrier.

VII. EVALUATION

A. Benchmark Experiment

In this experiment, we evaluate the accuracy of LoSense
in terms of distance tracking and the period of target motion

under various LoRa configurations.
Experiment setting: We perform the benchmark experiment
with an indoor testbed where the transmitter and the receiver
are separated by 3m, as shown in Figure 8. We install the
antenna of the LoSense transmitter on a reciprocating linear
actuator, and make it reciprocate at a period of 2 seconds (i.e.,
0.5 Hz) with a maximum moving range of 15 cm. We place
the helper node near the transmitter and keep its antenna static.
Both the LoSense transmitter and the helper node transmit the
same LoRa packets continuously. We conduct the experiment
under various LoRa configurations with SF from 7 to 12 and
BW amongst 125 kHz, 250 kHz, and 500 kHz. For each
configuration, we make the transmitter generate twenty rounds
of transmissions. In each round, we compute the distance
and frequency of the device’s reciprocating movement based
on the tracking model in Sec. IV. Furthermore, we evaluate
the performance of LoSense in low-SNR scenarios. For the
received signal of each LoRa configuration, we add white
Gaussian noise to generate LoRa transmissions with various
SNRs.
Results: Figure 9 shows the distance tracking errors under
various LoRa configurations and SNRs. The distance tracking
errors are estimated by comparing the tracked distance varia-
tion with the actual moving range. As shown in Figure 9(a),
the tracking errors of LoSense increase as the SNR decreases
with all SF configurations. This is due to the channel noise that
impacts phase feature extraction for LoSense tracking. Even
though, LoSense can achieve high-precise tracking even when
transmissions are under the noise floor. This is because the
combating noise designs in the LoSense architecture, where
we concentrate the energy of LoRa chirps in the time domain
and eliminate outliers for circle fitting. The averaged distance
tracking error is only 0.05m for LoRa SF 7 under an SNR of
-5 dB, and the error is less than 0.1m for LoRa SF 12 with an
SNR of -25 dB. Then, we exploring the relationship between
tracking accuracy with the signal bandwidth by comparing the
results in Figure 9(a), (b), and (c). We have illustrated in Sec. II
that the duration of a LoRa chirp is related to the bandwidth
configuration, where a lower BW leads to a longer LoRa chirp.
Therefore, LoSense achieves the best tracking accuracy when
BW is 125 kHz, where the averaged tracking error is 7.34 cm
for -25 dB SNR.

Further, we examine the accuracy of LoSense in tracking
the frequency of the device movement. The frequency error is
estimated by comparing the tracked device moving frequency
with the actual frequency of the actuator motion (i.e., 0.5 Hz).
Frequency tracking fails when there is no prominent FFT peak
as described in Sec. IV-C. We omit the tracking failures and
calculate the averaged frequency error for each configuration
under various SNR settings. Figure 10(a) shows frequency
error over different SFs given the bandwidth fixed at 125
kHz. LoSense achieves precise frequency tracking even under
extremely low SNR, e.g., the frequency error is only 0.02 Hz
under the SNR of -10 dB with SF7.

The SNR requirement for frequency tracking is much easier
than the distance tracking. For frequency analysis, we gather
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Fig. 9. Distance tracking errors under different LoRa transmission configurations and various SNRs.

-25-20-15-10-505101520

SNR (dB)

0

0.05

0.1

0.15

0.2

Fr
eq

ue
nc

y 
E

rr
or

 (H
z)

SF=7
SF=8
SF=9
SF=10
SF=11
SF=12

(a) BW = 125 kHz

-25-20-15-10-505101520

SNR (dB)

0

0.05

0.1

0.15

0.2
Fr

eq
ue

nc
y 

E
rr

or
 (H

z)

SF=7
SF=8
SF=9
SF=10
SF=11
SF=12

(b) BW = 250 kHz

-25-20-15-10-505101520

SNR (dB)

0

0.05

0.1

0.15

0.2

Fr
eq

ue
nc

y 
E

rr
or

 (H
z)

SF=7
SF=8
SF=9
SF=10
SF=11
SF=12

(c) BW = 500 kHz

Fig. 10. Frequency tracking errors under different LoRa transmission configurations and with various SNRs.
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Fig. 11. Outdoor long-range active tracking: (a) A bird view of the experiment area and the setup of the LoRa transmitter and LoSense receiver; (b) Distance
tracking errors at different positions; (c) Frequency tracking errors.

the energy of all samples in the estimation period by FFT,
which is resistant to outlier samples. However, for distance
tracking, a single outlier sample can introduce significant
errors in circle fitting. We also evaluate frequency errors over
various bandwidth configurations. The results are shown in
Figure 10, where signals with lower bandwidth have longer
chirp durations and thus have better tracking performance. To
summarize, LoSense achieves as low as 0.02 Hz frequency
tracking error even under -25 dB SNR given a suitable LoRa
configuration.

B. Component-level Evaluation

Experiment setting: In this experiment, we validate two key
parts of the LoSense design, i.e., the helper node and the
energy accumulation. We rule each part out of our system
and build two systems as elaborated below:
(1) LoSense W/O helper node: We build this system by keeping
the helper node stay in silence. According to Sec. IV-B,
without the helper node, LoSense cannot amplify the phase
difference of signals received by two antennas.
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Fig. 12. Tracking errors for component-level evaluation with three different
system implementations and various SNRs.

(2) LoSense W/O energy accumulation: In this setting, we skip
the energy accumulation and perform circle fitting with all
original signal samples.
We conduct the experiment over various SNR conditions. For
each SNR setting, we make the transmitter send 20 LoRa
packets. Then, at the receiver, we add white Gaussian noise to
the received signal to generate signal copies of different SNRs,



i.e., from 20 dB to -15 dB with a step of 5 dB. The default
SF is 12 and bandwidth is 125 kHz for all LoRa packets.
Results: Figure 12(a) shows the distance tracking accuracy
of three implementations under various SNR conditions. The
implementation without the helper node shows significant
performance degradation compared with the native LoSense,
whose distance tracking error reaches over 0.5m when the
SNR is as high as 5 dB. This is due to the lack of phase
feature amplification when there is no signal from the helper
node. The small signal phase difference at the two receiving
antennas is prone to be submerged by noises in low-SNR
situations. The implementation without energy accumulation
also shows performance degradation as the SNR decreases.
Its distance tracking error raises sharply when the SNR goes
below 0 dB, showing the energy accumulation significantly
improve the combating noise ability of LoSense.

Figure 12(b) shows the frequency tracking errors of the three
implementations. Only the full implementation can achieve
accurate frequency tracking when SNR < 0 dB. The imple-
mentation without energy accumulation failed to track the
vibration when SNR < 0 dB, indicating that the distance
estimation in Figure 12(a) when SNR < 10 dB is meaningless.
Even when SNR ≥ 10 dB, the error of the implementation
without energy accumulation is much larger than LoSense.
This is because, without energy accumulation, the original
signals are too noisy to fit in a correct circle.

C. Field Experiment

Experiment setting: This experiment evaluates the perfor-
mance of LoSense in outdoor field scenarios. We deploy
both the LoRa transmitters and the receiver in an outdoor
playground. The bird view of the experiment area is shown
in Figure 11(a). The maximum range between the transmitter
and the receiver is over 150m. We fix the position of receiver
and move the transmitter to ten different position (i.e., P1 to
P10 as shown in Figure 11(a)). We set transmitters to deliver
LoRa packets with the data rate configuration of SF12 and
the bandwidth of 125 kHz. The reciprocating linear actuator
is used for providing transmitter motions at each position
with the same configuration as described in Sec. VII. At each
evaluated position, we make the transmitter send 20 LoRa
packets. We estimate the averaged distance tracking errors and
frequency errors at each position.
Results: The results for the field experiment are shown in
Figure 11. We plot the tracked distance range for each position
in Figure 11(b), where the maximum distance error of LoSense
is lower than 2.32cm (at position P8). 50% of experiments
have the error lower than 0.58cm. We observe that the tracking
accuracy is stable even when the transmitter is over one hun-
dred meters away from the transmitter (i.e., at P6 to P10). This
is because LoSense has the combating noise designs, such as
energy accumulation and outliers elimination, which improves
its performance for processing low-SNR signals in far fields.
For the frequency tracking, the maximum frequency error of
LoSense is lower than 0.089 Hz (on position P10). These
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Fig. 13. BER and PLR performance of standard LoRa and LoSense under
various SNRs.

results show that LoSense can achieve accurate frequency
tracking in outdoor scenarios.

D. Impact on LoRa Communication

Experiment setting: This experiment verifies the impact of
LoSense on LoRa communication. To measure how much the
tracking process affects the alongside LoRa communication,
we decode LoRa packets in the indoor experiments in Section
VII-A. We set up a benchmark system where a moving
transmitter sends LoRa packets to a fixed receiver. The SF
and bandwidth are set to 9 and 250 kHz, respectively. Both
the benchmark system and LoSense send LoRa packets for 50
times. We decode LoRa packets and compare the bit error rate
(BER) and packet loss rate (PLR) for both LoSense and the
benchmark system. A LoRa packet is considered lost when its
bit error rate reaches 15%.
Results: Figure 13 shows the BER and PLR of LoSense and
the benchmark system. Both the BER and PLR of these two
systems increase as SNR decreases. The BER of LoSense
increases faster than the benchmark when the SNR decreases
from −10dB to −20dB. This is because LoSense requires
a helper node for concurrent transmission, which introduces
higher interference for data communication. However, as LoRa
CSS modulation is native robust against in-band interferences,
LoSense still achieves reliable communication even when the
SNR is as low as -16dB. When SNR ≥ −16dB, the BER of
LoSense is lower than 3.0% and the PLR is only 4%, which
is sufficient for providing reliable long-range communication
in most IoT applications as the standard LoRa.

VIII. RELATED WORKS

A. LoRa ISAC

Integrated sensing and communication (ISAC) has attracted
increasing interests from both academia and industrial for
recent years. It is promising to integrate the data communi-
cation and wireless sensing into a single system for saving
the scarce radio spectrum. Inspired by this idea, ReMix [24]
uses the backscatter signal to enable data communication and
wireless localization at the same time for in-body IoT devices.
FullBreath [25], SignFi [26] and WiMU [27] sense human
activities, e.g., walking, talking, breathing, with ongoing Wi-Fi
data packet transmissions. LoRadar [17] modifies the FMCW
radar and enables it to send LoRa signals, and hence the



radar can communicate with LoRa nodes as well as sensing.
Different from previous research, LoSense uses signals from
commodity LoRa transmitters for simultaneous sensing and
communication in long range.

B. LoRa based Localization and Tracking

Previous works propose LoRa localization based on Re-
ceived Signal Strength Indicator (RSSI) [8], [9], [28]–[30].
Since LoRa can support several or tens of kilometers com-
munication, these systems can deploy a small number of
LoRa gateways to cover a large area. For example, Choi et
al [12] use RSSI fingerprints to localize LoRa nodes with
only 4 LoRa gateways covering a 340m × 340m area. The
fingerprint map is generated by RSSI measured at different
LoRa gateways, and stored in a database for future queries.
Therefore, the localization/tracking error lies in the order of
magnitude of tens of meters. These works have localization
errors of hundreds of meters, due to the unstable measurement
of RSSI in long-range dynamic environments. SateLoc [29]
characterizes the channel attenuation property based on satel-
lite images, and reduces the localization error to 50m. Other
works propose schemes to localizing LoRa transmitters based
on Time Difference of Arrival (TDoA) [6], [7], [31]. Those
schemes have to solve the challenge of asynchronous clock
sources of multiple receivers, which introduces fluctuations in
timestamps and further impacts the localization accuracy.

Research works present target sensing with LoRa signals
[11], [13], [32], [33], which extract phase features from
reflected signals for heartbeat or breath tracking. [14] tracks
human activities, such as walking, waving, and breathing,
with a sensing range of only tens of meters, due to the high
attention of reflected LoRa signals. Previous works require
dedicated signals and do not support simultaneous sensing and
communication.

IX. DISCUSSION

Scalability. LoSense can be easily applied in large-scale
LoRa systems as it uses normal data communication signals
for wireless sensing. Unlike previous LoRa tracking systems
that requires LoRa nodes to transmit specialized signals for
sensing, LoSense works completely at the same time as normal
LoRa communication, only incurring additional complexity at
the gateway. LoSense uses idle nodes as the helper transmitter
for feature amplification, and thus incurs little burden for
normal network operation. Besides, we leverage the global
viewing of the LoRa gateway to find helper nodes with more
energy and schedule them to help track the target. Thus, we
can achieve the energy-consumption balance across the whole
LoRa network.
Power Consumptions. We optimize the power consumption
of LoSense in two ways: First, we avoid hardware and software
modifications on target transmitters. Thus, the node-side power
consumption is not increased. We put most computations at the
receiver side (i.e., LoRa gateways) which has wall-plugged
power supplies and can afford high computation overheads.
Second, we schedule helper nodes based on the global view

of the centralized gateway to balance the power-consumption
among different transmitters.
Multi-Targets Tracking. For concurrent LoRa transmissions
with different configurations, e.g., different SFs or BWs, their
signals are naturally orthogonal, and thus the receiver can
easily separate the concurrent packets and track each node
with interference. Otherwise, if multiple LoRa nodes with
the same configuration transmit simultaneously, LoSense has
first to separate collision signals. Previous literatures [34]–
[36] show many approaches for decompose overlapped LoRa
packets based on time and frequency features of concurrent
LoRa signals. Besides, we can also integrate other sensors
into the tracking method to help improve the accuracy [37].
Tracking multiple targets with the same LoRa configuration
will be our future work.

X. CONCLUSION

In this paper, we propose LoSense, a system for integrated
sensing and communication with LoRa signals. LoSense en-
ables long-range movement tracking for active devices in the
period of a regular LoRa packet transmission. We propose
tracking models for active transmitters, and we design feature
amplification and signal enhancement strategies for combating
the noise and interference in LoRa signals. We apply dual
antennas at the receiver to address the synchronization prob-
lem, and amplify the movement-induced phase variation by
introducing a helper node. We implement LoSense with LoRa
transmitters and USRP receivers, and extensively evaluate
its performance in both indoor and outdoor scenarios. The
evaluation results show that LoSense can achieve high-precise
tracking with the accuracy of 3.38 cm in distance and 0.02 Hz
in frequency even when the SNR is under −20 dB. LoSense
also achieves long-range tracking in outdoor scenarios with
distance errors less than 2.32 cm when the transmitter is 150
m apart from the receiver.
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