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Abstract—LoRa, more generically Low-Power Wide Area Net-
work (LPWAN), is a promising platform to connect Internet of
Things. It enables low-cost low-power communication at a few
kbps over upto tens of kilometers with a 10-year battery lifetime.
However, practical LPWAN deployments suffer from collisions,
given the dense deployment of devices and wide coverage area.
We propose CoLoRa, a protocol to decompose large numbers of
concurrent transmissions from one collision in LoRa networks. At
the heart of CoLoRa, we utilize packet time offset to disentangle
collided packets. CoLoRa incorporates several novel techniques
to address practical challenges. (1) We translate time offset,
which is difficult to measure, to frequency features that can be
reliably measured. (2) We propose a method to cancel inter-
packet interference and extract accurate feature from low SNR
LoRa signal. (3) We address frequency shift incurred by CFO and
time offset for LoRa decoding. We implement CoLoRa on USRP
N210 and evaluate its performance in both indoor and outdoor
networks. CoLoRa is implemented in software at the base station
and it can work for COTS LoRa nodes. The evaluation results
show that CoLoRa improves the network throughput by 3.4×
compared with Choir and by 14× compared with LoRaWAN.

I. INTRODUCTION

The success of the Internet of Things (IoTs) highly de-

pends on connecting large scale IoT devices. As a promising

communication platform, LPWAN can provide low-cost long-

range communication with very low energy consumption for

large scale IoT devices [1]. Long Range (LoRa) is a widely

used and industry applied LPWAN technique, which works

on the unlicensed sub-GHz ISM band, e.g., 475 MHz or 900

MHz bands [2]. Typically, end nodes of a LoRa network can

achieve a communication range of kilometers or even tens of

kilometers at few kbps. The energy consumption of LoRa end

nodes is very low and a node can work for nearly 10 years

powered by a button cell battery.

Deploying LoRa networks in practice, however, is very

challenging. Each base station in LoRa covers a wide area

and is expected to connect to a large number of devices [3].

This introduces severe signal collisions when multiple end

nodes transmit packets to the base station concurrently, which

decreases the network throughput and also ratchets up the

energy consumption and network delay. Moreover, the limited

energy budget and low-cost hardware make it difficult to

apply sophisticated MAC protocol to resolve collisions [4],

[5]. The relative long packet duration further accelerates the

collision problem. This leads to a gap between LoRa’s vision

to provide low-power large-scale connections, and its practical

capability [6].

There exist many concurrent decoding approaches in tradi-

tional wireless [7], [8]. As a representative one, ZigZag [7] de-

codes collided Wi-Fi packets but it requires m retransmissions

to resolve an m-packet collision. mZig [8] decodes multiple

ZigBee packets from a collision by leveraging ZigBee’s cod-

ing characteristics. Recently, NetScatter [9] proposes a new

encoding and decoding technique for multiple backscattered

and synchronized chirp signals, while it cannot work for

unsynchronized transmission in LoRa networks. Choir [10]

shows that the hardware imperfection of low-cost LoRa end

nodes will cause frequency offsets in LoRa symbols. It utilizes

the frequency offsets to distinguish collided LoRa packets.

However, it is difficult to extract accurate the tiny frequency

offset especially for low SNR LoRa signal with inter-packet

interference. Thus, the experiment results in [10] show a

limited concurrency. Meanwhile, we also observe that the

frequency offset is not stable for some low-cost LoRa nodes,

which diminishes its benefit in practice.

Our Approach. To resolve collisions, we proposed CoL-

oRa, a protocol that enables Multi-Packet Reception (MPR) in

LoRa. CoLoRa utilizes the packet time offsets to decompose

multiple concurrent transmissions from one collision directly.

To see how CoLoRa works, consider the scenario in Fig. 1,

where two packets collide. Both packet-A and packet-B consist

of multiple chirp symbols. LoRa modulates signals with chirp

spread spectrum (CSS) technique, where chirps with different

frequency shifts encode different data bits. The LoRa decoding

algorithm multiplies the received chirp with a standard down-

chirp. When there is no collision, the result is a single tone

which translates to a single peak in the frequency domain.

Otherwise, there will be multiple frequency peaks, as shown

in Fig. 1. The data bits of the two collided packets are mixed

up and hence the decoding algorithm fails to decode any of

them.

At the heart of CoLoRa is a physical layer algorithm that

utilizes the packet time offset to disentangle collisions. Upon

receiving a collision, CoLoRa first cut the received signal

into a series of reception windows, each with length equal

to a chirp. As shown in Fig. 1, when choosing a misaligned

window, each chirp is divided into two segments by two

consecutive windows. Then for signal in each window, we

transform the incomplete chirp segments to frequency peaks

by multiplying a down-chirp and applying a Fourier transform.

We formally prove that the height of the peak is proportional

to the length of the segment in Section III . We also show that

the two peaks of the same chirp have the same frequency, e.g.,
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Fig. 1: An example of decomposing a two-packet collision

with packet time offset. CoLoRa decomposes collided packets

by transforming the packet time offset to frequency domain

features.

f0 for packet-A’s first chirp. For two peaks belonging to the

same chirp, define the peak ratio as the height of the latter one

divided by that of the former one. We can see that peak ratio is

identical for chirps of the same packet, while it is distinct for

chirps of different packets. Thus, by grouping chirps with the

same peak ratios, CoLoRa can finally disentangle the collided

packets.

The benefits of using peak ratio as features to separate

collided packets are three-fold. (1) It concentrates energy for

time-domain features to signal peaks in the frequency domain

and thus it works well for low SNR LoRa signal with inter-

chirp interference. (2) It is resilient to signal dynamics and

environment complications, as the peak ratio is determined

by the packet time offset which is stable during the whole

transmission. (3) There is no error accumulation as the peak

ratio of each chirp is calculated independently.

Challenges. Using peak ratio to disentangle packets in

CoLoRa also faces practical challenges: First, we find that the

selection of reception windows affects the peak estimation.

For example, an improper reception window selection may

result in two peaks of unbalanced height, where the shorter

peak is easily distorted or even be masked in noise. We

propose an interleaved window selection strategy which can

achieve a bounded division ratio in [ 13 , 3]. Second, we find it is

difficult to obtain an accurate peak estimation as the inter-peak

interference leads to peak distortions. We propose an iterative

peak recovery algorithm where the highest peak component

is iteratively estimated, recovered and extracted. Thus, we

can eliminate the inter-peak interference as well as solving

the near-far problem. Third, after peak grouping, we find the

packet decoding is severely impeded by the mixed impact of

Central Frequency Offset (CFO) and reception window time

offset. Based on the structure of LoRa preamble, we design a

technique to estimate and compensate the CFO and window

time offset for LoRa decoding.

Main results and contributions. The main results and

contributions of this paper are as follows:

• We proposed CoLoRa, a protocol to decompose multiple

concurrent transmissions from one collision in LoRa,

to bridge the gap between LoRa’s vision of providing

low-power long-distance connections to large scale IoT

devices, and its practical capability.

• We address practical challenges in CoLoRa design. The

performance of CoLoRa highly relies on accurate in-

formation of peaks. We propose an efficient reception

window selection strategy to generate balanced peaks.

We design an iterative peak recovery algorithm to address

inter-peak interference and recover peak information ac-

curately. Finally, we remove the impact of CFO and time

offset to accurately decode packets.

• We implement CoLoRa on USRP N210 and thoroughly

evaluate its performance in different scenarios. CoLoRa

is completely implemented in software at the base station

without requiring any modifications at the end nodes. The

experiments results show that CoLoRa can improve the

network throughput by 3.4× compared with Choir and

14× compared with LoRaWAN.

II. A PRIMER ON LORA

LoRa physical layer employs the chirp spread spectrum

(CSS) technique to modulate signals. CSS modulates signals

into chirps of linearly increasing/decreasing frequency, i.e.,

up-chirps and down-chirps, making the signal occupying the

entire spectral band. Chirp symbols are inherently robust

against in-band interference and other channel degradations,

and hence they can be detected and decoded even under

extremely low SNR, which makes low-power and long-range

communication be possible for LoRa end nodes.

LoRa modulates data bits by cyclically shifting the baseline

up-chirp. As shown in Fig. 2(a), the frequency of the baseline

up-chirp increases linearly from −BW
2 to BW

2 , and the length

of the chirp is T . Thus, the frequency of baseline up-chirp can

be represented as kt− BW
2 , where k = BW

T is the gradient of

frequency sweeping. And the baseline up-chirp C(t) can be

represented as

C(t) = ej2π(−
BW
2 + kt

2 )t

Given the frequency shift f of baseline up-chirp, the resulted

symbol is C(t)ej2πft. Then given the spectrum bandwidth

BW , after the shift, all the frequencies higher than BW
2 will

be aligned down to −BW
2 as shown in Fig. 2(b). LoRa defines

N different shifted frequencies, which results in N uniformly

shaped up-chirps to encode SF = log2N bits.

To demodulate, LoRa leverages the baseline down-chirp,

i.e., the conjugate of baseline up-chirp C∗(t). As shown in

Fig. 2(c), by multiplying a baseline down-chirp, each shifted

up-chirp is despreaded, and the result is calculated as

C∗(t)× C(t)ej2πft = ej2πft
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(a) (b) (c)

Fig. 2: LoRa Physical Layer: (a) Spectrogram of a baseline

chirp symbol. (b) Spectrogram of a shifted chirp symbol. (c)

The demodulation result of the base chirp symbol and the

shifted chirp symbol.

i.e., a single tone at frequency f . The encoded data bits are

then recovered by searching energy peaks from the result of

the Fourier transformation.

III. COLLISION SEPARATION BASICS

In this section, we show the basics of how to separate

packets from collisions in LoRa. Before explaining our col-

lision separation strategy, first recall how the conventional

LoRa receiver works. When a packet arrives without collision,

the LoRa receiver first synchronizes itself with the received

packet. As is shown in Fig. 3(a), after synchronization, each

chirp symbol is aligned with the reception window. Then the

receiver multiplies a down-chirp in each window and applies

FFT to transform each chirp to a single peak, whose frequency

represents the encoded data of the corresponding chirp.

When there is a collision, we also use the reception windows

to cut the received signal. Note here we select the reception

window not aligned to the packets. Thus, each chirp is divided

into two segments in two consecutive reception windows,

as shown in Fig. 1. Now, we analyze the result of the

multiplication and show how to use this for packet separation.

In LoRa, an encode chirp symbol is an up-chirp with a

frequency shift, i.e., x(t) = Hej2πftC(t), where H is the

signal amplitude and f is the shifted frequency to encode bits.

Denote τ is the chirp-level offset between the packet start and

the reception window in Fig. 3(b). For a chirp, the first chirp

segment x1(t) can be written as

x1(t) = x(t−τ) = Hej2πf(t−τ)C(t−τ) τ ≤ t < T (1)

As time shift can be translated to frequency shift, we have

C(t− τ) = e−j2πkτC(t). Thus, Eq. (1) can be rewritten as

x1(t) = Hej2π(−fτ+(f−kτ)t)C(t) τ ≤ t < T (2)

Similarly, the second chirp segment x2(t) can be written as

x2(t) = x(t− (T − τ))

= Hej2π(−f(T−τ)+(f−k(T−τ))t)C(t) 0 < t < τ
(3)

We multiply the signal in each reception window with a

baseline down-chirp, despreading each chirp segment to a

single tone. Mathematically, for x1(t) in the first reception
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Fig. 3: (a) Conventional receiver uses aligned windows and de-

modulates chirp by chirp. (b) CoLoRa receiver uses unaligned

windows and demodulates window by window.

window, after multiplying with the down-chirp, we have

x̂1(t) = Hej2π(−fτ+(f−kτ)t)C(t) · C∗(t)

= Hej2π(−fτ+(f−kτ)t)
(4)

which is a single tone at the frequency of f1 = f − kτ . x2(t)
in the second window is also despreaded to a single tone, with

the frequency of f2 = f−k(T−τ). When using a sample rate

equal to the bandwidth (i.e., BW ), the two despreaded signal

x̂1(t) and x̂2(t) share the same frequency in the spectrum,

i.e., f1 = f2 = f − kτ . Therefore, as shown in Fig. 3(b),

two segments of the same chirp are transformed to two peaks

located at the same FFT bin of f − kτ .

Thus, for the first segment x1(t), the height of its peak is

h1 =

N−1∑
n=0

x̂1[n]e
−j2π(f−kτ)nT

N (5)

where x̂1[n] is nth sampling point of x̂1(t) and N is the total

sample points of a chirp. Substituting x̂1[n] with the Eq. (4),

we have

h1 = Hfs(T − τ). (6)

Similarly, for the second segment x2(t), the peak height is

h2 = Hfsτ. (7)

For each chirp, we define peak ratio P as

P =
h2

h1
=

τ

T − τ
. (8)

It can be seen that the peak ratio is determined by the window

offset τ . Thus, the peak ratio is identical for all chirps of the

same packet. Meanwhile, we can also see from Eq. (6) and

Eq. (7) that based on the peak height h1 (or h2), we can

calculate the amplitude H of the chirp segment.

Summary. Through the analysis, we have the following

results.

• The peaks of two segments of the same chirp are located

at the same frequency, with height proportional to seg-

ment length.
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Fig. 4: The main workflow of CoLoRa.

• The peak ratio is determined by the window offset, i.e.,

P = τ
T−τ , and thus is identical for all chirps of the same

packet.

• The peak ratio is different for packets with different

arrival time.

• Based on the peak height, we can calculate the amplitude

of the chirp segment.

Briefly, CoLoRa leverages the peak ratio to distinguish packets

and then use peak information to facilitate decoding. In the

next section, we will detail CoLoRa’s design to address prac-

tical challenges for separating packets and achieving multi-

packet reception.

IV. COLORA DESIGN

A. Overview

Fig. 4 shows the workflow of CoLoRa design. CoLoRa at

the base station mainly consists of four components. (1) For

a received signal, CoLoRa first selects reception windows to

divide the received signal into segments with length equal to a

chirp. (2) For each reception window, CoLoRa transforms the

low SNR signals into robust FFT peaks and then accurately

recover the features of peaks in the presence of noise and

inter-peak interference. (3) Based on the estimation of FFT

peaks, CoLoRa clusters the peaks into multiple groups where

each group contains the peaks of the same packet. (4) Finally,

CoLoRa decodes each group of peaks while addressing the

challenge of Central Frequency Offset (CFO) and packet time

offset. We show the details of each component and how to

address practical challenges.

B. Reception Window Selection

Upon receiving a signal, CoLoRa needs to cut the signal

into continuous reception windows each with length equal to

a chirp. A practical challenge is that the selection of reception

windows impacts the decoding performance. For example, for

the collision cases, an improper selection of reception windows

will result in an unbalanced division, where chirps are divided

into very short segments corresponding to very low peaks,

which are easily distorted or even masked in noise as shown

at the top of Fig. 5. While for the collision-free cases, the

misaligned windows will hinder the chirps to concentrate the

Fig. 5: Examples of interleaved windows for solving unbal-

anced window division

whole symbol’s energy and further diminish its ability to

combat the noise. Thus, the selection of reception windows

should satisfy the requirements for both the collision cases

and the collision-free cases.

We propose an interleaved reception window selection strat-

egy to achieve balanced division in collision cases and aligned

windows in collision-free cases. To achieve this goal, we first

detect the onset time of the received signal. We use an Akaike

Information Criterion (AIC) [11] based algorithm to detect

the onset time of the received LoRa packet, which is proved

to work well even under the noise floor [12]. Based on the

detection result, we select reception windows W1 with window

beginning aligned with the detected onset time. Then we use

W1 to decode the received signals and estimate the peaks for

every reception window. If only one peak is detected in each

window, it indicates that there is no collision and then the

signal is decoded like in conventional LoRa. Otherwise, we

select a new interleaved reception window W2 by moving the

start of W1 by T
2 , where T is the chirp length.

Here, we show that given any packet involved in the colli-

sion, at least one of those two interleaved reception windows

(i.e., W1 and W2) can give a balanced division with a bounded

division ratio in [ 13 , 3]. As shown in Fig. 5, the time offset

between the starts of the two reception windows W1 and W2

is T
2 . Assume the chirp-level time offset between pkt and W1

is t1, and the offset between pkt and W2 is t2. Without loss

of generality, assume t1 > T
2 . Thus, we have t2 = t1 − T

2 .

We show that either W1 or W2 should divide pkt into chirp

segments with division ratio in [ 13 , 3].

We can calculate the shorter chirp segment by W1 as D1 =
min(t1, T − t1)) ≤ T

2 . The shorter segment by W2 is D2 =
min(t2, T − t2)). As t2 = t1 − T

2 , we have D2 = T
2 − D1.

We choose the more balanced one, i.e.,

D = max(D1, D2) = max(D1,
T

2
−D1)

where D1 is smaller than T
2 . Thus, we can prove D ≥ T

4 .

Similarly, we can prove D ≤ 3T
4 . Thus, the division ratio,

resulted from either W1 or W2, should be in the range of

[ 13 , 3].
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C. Iterative Peak Recovery

In each reception window, we transform the signal to peaks

by multiplying baseline down-chirps and applying FFT. Then

we need to estimate the accurate frequency and height for

each peak in order to separate packets. While in practice,

height estimation for peaks is prone to inter-chirp interference.

Revisiting the progress of LoRa decoding, we multiply a

down-chirp and apply FFT for signals in each reception

window. We can observe that there are periodical sidelobes

located around each main peak after FFT, a property that stems

from the time limited input sequence. The sidelobes affect the

peak estimation from two aspects. On one hand, sidelobes

distort peaks and affect accurate measurements of the peak

height and frequency. On the other hand, low height peaks

tend to be masked by sidelobes of other strong peaks.

We propose an iterative peak recovery algorithm. The

pseudocode for iterative peak recovery algorithm is shown in

Algo. 1. We first find the highest peak from the reception

window. The benefit of using the highest peak is two-fold.

First, the relative distortion of the highest peak is smaller

than the other peaks. Second, using the highest peak avoids

incorrectly using sidelobes as peaks since the highest peak

normally cannot be any sidelobe. By measuring the frequency

and height of the highest peak, we can obtain a coarse

estimation of the real peak. Assume the highest peak has a

height of h0, a center frequency f0 and a phase of φ0. To

obtain a coarse estimation of chirp segment, we need further to

obtain the position, amplitude and length of the chirp segment.

Position estimation. First we need to determine the position

of the chirp segment, i.e., whether the segment is adjacent

to the former window or the latter window. We use the signal

from both the former and the latter windows to help determine

the chirp position. Denote the signal of the current window is

x0, and the signal of the former and the latter windows are

x1 and x2. If we combine the signal of each two adjacent

windows together, we can get y1 = [x1, x0] and y2 = [x0, x2],
each with the length of two chirps. Then, we multiply two

continuous baseline down-chirp with y1 and y2, respectively.

After FFT on the multiplication, we obtain two peaks h1 and

h2 corresponding to y1 and y2, both located at f0. If the chirp

segment is adjacent to the latter window, the height of h2

should be higher than that of h1, and vice verse.

Amplitude and length estimation. We estimate the amplitude

of the chirp segment based on y1 and y2. Assume h2 is the

height of the higher peak, as a chirp symbol can only span

two windows, y2 should contain the complete chirp symbol.

As the peak height is proportional to the length of segment,

we have h2

h0
= T

L . Thus, we can estimate the length of chirp

segment in x0 as L = h0

h2
T . According to Eq. (7), we can

calculate the amplitude of the chirp segment as H = h0

fsL
,

where fs is the sampling frequency.

Accurate peak recovery. Based on the frequency f0, phase

φ0, length L and amplitude H , we can reconstruct the initial

chirp segment as

s̃(t) = Hej2πft+φ0C(t) (9)

Algorithm 1: Iterative Peak Recovery

Input: Signal in a reception window: Sig
Output: Height and frequency of peaks: [H,F ]
DemodSig = Sig ⊗DownChirp;

while SUM(FFT( DemodSig)) > threshold do
[f0 , φ0 , h0] = HIGHESTPEAK(FFT(DemodSig));

[Loc, h] = SEGMENTLOCATION();

L = Th0
h

;

H = h0
fsL

;

s̃ = INITIALCHIRPSEG(f0 , φ0 , H , L, Loc);

S = ITERATIVEREFINE(s̃);

[Hi, Fi] = PEAKMEASURE(FFT(S ⊗DownChirp));

CANCEL S FROM Sig;

DemodSig = Sig ⊗DownChirp;

end
return [H,F ];

where t ∈ [0, L] if the segment is adjacent to the previous

window, or t ∈ [T − L, T ] if the segment is adjacent to

the following window. The chirp segment s̃(t) is a coarse

estimation of the real chirp segment as it may be distorted by

sidelobes of other chirps. For a more accurate estimation of the

chirp segment, after canceling it from the signal, we will obtain

less residual energy in the remaining signal. Thus, we search

for different chirp segments in the near space of the initial

chirp segment in terms of phase, amplitude, start frequency

and length. For each chirp segment, we cancel it from the

original signal and calculate residual signal in the frequency

domain by summing up the energy of the FFT outputs. The

goal of the search is to find the optimal chirp segment S that

minimizes the residual energy.

Then we obtain an accurate peak by multiplying the op-

timal chirp segment with a baseline down-chirp. Moreover,

by canceling the optimal chirp segment, we also cancel its

interference with other peaks. We iteratively recover accurate

peaks in the remaining signal until the residual energy is

lower than a threshold. By using our iterative peak recovery

algorithm, we can also address the near-far problem where

a strong signal from a near source interferes with a weaker

signal from a further source.

D. Packet Separation and Decoding

Till now, accurate peaks are recovered. We show how to use

this information for separating and decoding packets. Recall

that peaks of two segments from the same chirp are located at

the same frequency. We can pair these two peaks by matching

peaks of the same frequency in two consecutive windows. For

each pair of peaks, we calculate the peak ratio, i.e., the height

of the latter peak divided by the height of the former peak.

Note that the peak ratio is identical for chirp symbols of the

same packet but different from packet to packet.We use a k-

means approach to group the peaks into k different clusters,

each of which corresponds to a collided packet.

To decode for each group of peaks, we need to address

the peak frequency bias introduced by CFO and window

time offset. Both CFO and window time offset will result

in chirp decoding errors as they introduce peak frequency
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Fig. 6: Examples of CFO and Time Offset Estimation.

biases. Normally, we can measure the frequency shift of

preambles to obtain the CFO. The challenge is that window

time offset between the chirp and reception window also

results in the frequency shift. We utilize the structure of the

LoRa packet to resolve this challenge. In a LoRa packet,

the preambles are baseline up-chirps and the SFD contains

baseline down-chirps. As shown in Fig. 6, CFO will cause

the same frequency shift to both the up-chirp and the down-

chirp. When there is no window time offset, both baseline

up-chirps and baseline down-chirps are transformed to peaks

with zero frequency shift. Otherwise, each chirp is transformed

to a peak with non-zero frequency shift proportional to the

window time offset. Though both CFO and window time offset

incur frequency shift, their impacts are different. CFO causes

identical frequency shift for both the up-chirp and down-chirp

while window time offset causes opposite frequency shifts for

the up-chirp and down-chirp. Denote TO = τ is the window

time offset, for the baseline up-chirp, the total frequency shift

can be calculated as

δfup = −τk + CFO (10)

where −τk is the frequency shift caused by the window time

offset. Similarly, for the baseline down-chirp, the frequency

shift is

δfdown = τk + CFO.

We calculate δfup and δfdown by multiplying the preamble

with down-chirps and the SFD with up-chirps. Then we can

estimate the CFO as

CFO =
δfup + δfdown

2
.

Meanwhile, by substituting CFO into Eq. (10), we can also

obtain the estimation of the window time offset τ .

We compensate for each peak with the calculated CFO and

window time offset. Finally, we can decode a packet with a

group of peaks using a standard LoRa decoder.

V. IMPLEMENTATION

a) Hardware: We implement CoLoRa base station on

USRP N210 software radios with a UBX daughterboard. The

base station uses a single antenna with 2 dBi gain and can

receive signals at 470 MHz and 900 MHz bands for LoRa.

The implementation supports 125 kHz, 250 kHz and 500 kHz

bandwidth for each channel. CoLoRa decoding algorithm is

independent of the hardware platform, and it can also be

Fig. 7: CoLoRa base station on USRP N210 and LoRaNet

testbed.

implemented on other commercial LoRa base stations as long

as the physical samplings can be obtained. CoLoRa does

not have special requirement on end nodes and can work

with any of existing LoRa nodes. In our implementation and

experiment, we use the LoRa node with an SX1278 radio chip

and a single antenna.

b) Software: We use the UHD+GNU-Radio library [13]

for developing our own LoRa demodulator, and implement

CoLoRa in MATLAB to process PHY samples. The function-

ality of CoLoRa is to decompose an m-packet collision into

m sequences of collision-free symbols and then translate them

into m packets.

VI. EVALUATION

A. Methodology

a) Scenario: We evaluate the performance of CoLoRa

in two different scenarios.

• LoRa testbed (LoRaNet) which consists of 40 LoRa end

nodes as shown in Fig. 7. Each end node consists of an

SX1278 radio chip, working at the frequency of 470 MHz

and placed at a fixed position of a shelf. All the LoRa

nodes are connected to a backbone network through the

Raspberry Pis and thus information from them can be

efficiently collected.

• Outdoor real LoRa network, where 20 LoRa temperature

and humidity sensors are placed at different locations of

the campus such as buildings, roads and parking lots

as shown in Fig. 8. Each sensor node can collect and

transmit the data of temperature and humidity to the base

station by LoRa packets. The nodes are distributed over

a region of 0.3km by 0.5km.

b) Baseline: We compare the performance of CoLoRa

with two different approaches.

• LoRaWAN [14]: The widely used standard LoRaWAN

baseline using ALOHA.

• Choir [10]: A recent LoRa collision resolution approach

that decouples collisions using hardware imperfection of
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Fig. 8: The outdoor deployed LoRa network, each sensor node

transmits temperature and humidity data by LoRa packets

periodically.

end nodes. In practice, the hardware offsets of low-cost

LoRa end nodes fluctuate according to the node type,

packet length and SNR, as shown in Fig. 9. Thus, in our

implementation, we use both the fractional FFT bin and

the peak magnitude to match correct transmitters.

B. Experiment Result

1) Decoding Multi-Packet Collision: In this experiment,

we examine CoLoRa’s performance for separating multiple

packets in collisions. As LoRaWAN cannot separate packets

in collisions, their performance under collision is extremely

low. Thus, we only show the performance of CoLoRa and

Choir, which can separate multi-packet reception in LoRa.

We use the LoRaNet testbed to efficiently generate multi-

packet collision in which we can control each collided nodes

accurately. To produce a collision with M overlapped packets,

we use a beacon to synchronize the transmission for M
different end nodes.

Upon receiving a beacon, all M end nodes wake up and

transmit a LoRa packet. We allow a random processing delay

for each end node. All packets are generated with a specific

known sequence of bytes. At the base station, packets from the

M end nodes are overlapped, leading to an M-packet collision.

We produce collisions with a different number of overlapped

packets by changing the number of involved end nodes M .

At the base station, we use CoLoRa and Choir to decompose

the collided packets. Then for each decomposed packet, we

use a standard LoRa decoder to translate the chirp symbols

into data bits. The packets sent by each end node is known

in prior. Thus, we can verify the correctness of the decoded

packets and calculate the Packet Loss Rate (PLR) and network

throughput of all nodes in this experiment.

Fig. 10(a) shows the PLR for CoLoRa and Choir. As

concurrent nodes increasing from 1 to 20, the PLRs of both

the two approaches grow up. The PLR of CoLoRa increases

much more slowly than that of Choir. This is because CoLoRa

extracts more efficient features to separate packets while Choir

uses hardware imperfection which is less stable and difficult

to detect especially under inter-chirp interference and channel
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Fig. 9: Characterizing Hardware Offsets: the root mean-

squared error of the frequency offset within a packet for (a)

different type of end nodes with the same configuration (SF12,

packet length of 10 Byte); (b) different packet length and SNRs

(sensor node with SX1278).
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Fig. 10: Decoding for different concurrent transmissions at a

single-antenna USRP base station. (a) Packet Loss Rate (b)

Network throughput.

noise. This also coincides with the result in Choir [10] that

it supports less than 6 concurrent transmissions and with

more concurrent transmissions its performance degrades sig-

nificantly. We further investigate the performance of CoLoRa

and find that the packet loss usually happens when two packets

have similar peak ratios causing peaks being clustered into

a wrong group. We can also see that when the number of

current nodes is less than 4, CoLoRa and Choir have similar

performance. However, when the number of nodes increases,

CoLoRa quickly outperforms Choir.

We further send decomposed chirp symbols to a standard

LoRa decoder for extracting the content of the packet. LoRa

modulates the data bits into chirp symbols with an FEC code,

hence some of the symbol errors can be corrected during the

decoding. In our experiment, we initialize the testbed nodes

with a coding rate of 4/8, where each four useful data bits are

encoded eight bits along with FEC code. After decoding, we

can get the overall network throughput as shown in Fig. 10(b).

The network throughput of CoLoRa increases as the number

of concurrent nodes increases from 2 to 20. This is due to the

benefit of multi-packet reception in CoLoRa. Meanwhile, we

can see that the network throughput of Choir is much lower

than that of CoLoRa. The network throughput even starts to

decrease when the number of concurrent nodes is larger than

12. This is because when the number of concurrent nodes

is large, most packets are undecodable for Choir. When the

number of nodes is 20, the network throughput of CoLoRa

(552 bps) is about 3.4× of Choir (162 bps).
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Fig. 12: CoLoRa’s network

throughput under different

levels of SNR.

2) Impact of SNR: In this experiment, we show the impact

of SNR on the performance of CoLoRa. High channel noise

will cause peaks of chirp segments suffering from distortion,

which further disturbs the calculation of peak ratios. To

characterize the impact of channel noise, we use the testbed

to produce packet collisions where each end node transmit a

randomly chosen sequence of bits concurrently

We define the SNR of a collision signal as the SNR of its

strongest signal component. Fig. 11 plots the SNR survey for

signals from each testbed node. The SNRs of different nodes

are diverse, but all above the noise floor. Thus, for precise SNR

control and emulating low SNR scenario, we artificially add

noise traces to the received collision signals. By controlling

the magnitude of the added noise traces, we can achieve a

certain SNR in dB defined as 10log10
A2

E[Z2
Q(t)+Z2

I (t)]
, where

zQ(t) and zI(t) are the Q and I traces of the added Gaussian

noise and A is the signal’s amplitude.

Fig. 12 shows the Network Throughput for CoLoRa under

different levels of SNR. CoLoRa can also work for the low

SNR signal as it concentrates the energy of a chirp to a signal

peak in the frequency domain. As shown in Fig. 12, the total

throughput is stable when SNR is higher than −10dB and the

performance slightly degrades for lower SNR scenario.

3) Addressing Collision in Real LoRa Networks: In this

experiment, we verify the performance of CoLoRa in a real

deployed LoRa network consisting of 20 LoRa end nodes in

the campus. Fig. 8 shows the deployment environment, which

has several multi-story buildings, trees and hills. Each end

node is equipped with a temperature sensor and a humidity

sensor, and the sensed data is transmitted to the base station

periodically in a regular interval (duty cycle of 0.1 in our

experiment). The transmitted data is encoded with a spreading

factor of 12 and a coding rate of 4/8 and the length of the

packet is no more than 20 Byte. On the MAC layer, we adopt

LoRaWAN MAC based on pure ALOHA for all the end nodes.

Fig. 13 shows the performance of three different LoRa

receivers under a low duty-cycled network of size less than

20. Considering the LoRaWAN receiver without any collision

resolution scheme, the PLR of LoRaWAN increase rapidly

when the network scales. The Network Throughput of the

LoRaWAN receiver first grows up and then rapidly drops down

as the size of the network increases. When the network size is

small, the increase of concurrent nodes improves channel uti-
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Fig. 13: Performance in real deployed low duty cycled net-

works: (a) Packet Loss Rate; (b) Network Throughput under

different network size.

lization. However, when the network scales, collisions happen

frequently, which significantly degrades the performance of the

LoRaWAN receiver. Overall, we consider the case for 10 nodes

with 10% duty cycle ratio. In such a case, there are enough

data in the channel for transmission and LoRaWAN+Oracle

should achieve its highest throughput, i.e., 100%. We can

see that LoRaWAN only achieves 7.2% of the Oracle. The

throughput of CoLoRa is about 14× that of LoRaWAN. Choir

can separate overlapped packets from a collision based on

the hardware offset. For the low duty cycle network with

a small number of nodes, Choir also performs well as the

number of concurrent transmissions is expected to be low (e.g.,

≤ 4). This coincides the results in Fig. 10(a) where CoLoRa

and Choir have similar performance for low concurrency. The

performance of Choir also degrades when the size of network

increases.

As shown in Fig. 13(a), PLR of Choir is around 30% when

there are 20 concurrent nodes in the network. CoLoRa outper-

forms the other two approaches when the network scales and

it keeps a relative low PLR. The resulted network throughput

grows nearly linearly as the size of network increases, indi-

cating CoLoRa can decompose most of the collided packets.

VII. RELATED WORK

a) Collision resolution in Wireless: Extensive works

focus on collision resolution and parallel decoding in various

wireless systems [15]–[18] (e.g., Wi-Fi, RFIDs and cellu-

lar networks). Some advocate Multiple-Input Multiple-Output

(MIMO) to exploit spatial diversity across multiple paths [19],

[20]. MIMO based approaches, which significantly improves

the throughput, cannot be used in LoRa with a single antenna.

Successive interference cancellation (SIC) based approaches

resolve collisions by iteratively canceling interference from

collided signals [21], [22]. These schemes work only when

the colliding senders transmit under strict power control, and

thus they are usually used in cellular networks. ZigZag [7]

combats inter-packet collisions in 802.11. It utilizes different

collision-free parts of different collisions to iteratively decode

the overlapped packets. In this way, ZigZag decodes an m-

packet collision based on m repeated collisions. mZig [8]

decompose m concurrent ZigBee packets from one collision

directly. It starts with a collision-free chunk and then itera-

tively reconstructs and extracts each decoded symbol.
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b) Concurrent transmissions in LoRa: Recently,

NetScatter [9] proposes a multi-packet reception strategy

which enables hundreds of concurrent transmissions in LoRa

backscatter systems [23]. The key innovation of NetScatter is

a distributed coding mechanism where each node is assigned a

shifted chirp symbol and uses on-off keying to modulate data.

NetScatter requires that all the transmitters are synchronized,

and hence it cannot work for unsynchronized transmission in

existing LoRa communications. DeepSense [24] enables ran-

dom access and coexistence for different LoRa configurations

by exploring machine learning algorithms on-board. It identi-

fies the presence of LoRa collisions using the neural networks.

However, in the emergence of collisions with the same LoRa

configuration, DeepSense cannot recover any of the collided

data bits. Choir [10] proposes a collision resolution method for

LoRa. It depends on the fact that the hardware imperfection

of a low-cost LoRa end node causes a frequency offset of

the corresponding generated chirp signal. Choir utilizes this

frequency offset to decompose collided packets of different

end nodes. However, accurately extracting the tiny frequency

offset is very difficult especially for low SNR LoRa signals.

Meanwhile, the frequency offsets of low-cost end nodes are

changeable over time, which impacts its performance in prac-

tice. mLoRa [25] applies SIC to LoRa collisions. It starts

with a collision-free chunk and then iteratively reconstructs

and extracts each decoded chirp symbol. FTrack [26] decodes

multiple LoRa packets from a collision by calculating the

instantaneous frequency continuity. Both mLoRa and FTrack

have fundamental limitations in decoding low SNR LoRa

signals, as they focus on the time domain signal analysis and

do not consider the modulation features of LoRa.

VIII. CONCLUSION

We present CoLoRa, a multi-packet reception protocol in

LoRa to address the practical collision problem of LPWAN

deployments. CoLoRa utilizes, perhaps counter-intuitively,

packet time offset to decompose multiple packets from a single

collision. We propose several novel techniques to address prac-

tical challenges in CoLoRa design. We translate time offset,

which is difficult to measure for symbols in collisions, to

robust frequency features, i.e., peak ratios, for low SNR LoRa

signal. We design a method to extract accurate peak ratios

by canceling inter-packet interference. Finally, we address the

frequency shift incurred by CFO and time offset to decode

LoRa packets. CoLoRa is completely implemented in software

at the base station, without requiring any modifications to end

nodes. The evaluation results show that CoLoRa improves the

network throughput by 3.4× compared with Choir and 14×
compared with LoRaWAN. We believe CoLoRa can be easily

applied to today’s LoRa networks with a very small overhead.
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