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ABSTRACT
WiFi backscatter localization is a promising technology for the
Internet of Things. However, existing works cannot work well for
large-scale and low-cost tags with commodity WiFi devices. We
present Willow, which provides accurate localization for paral-
lel backscatter tags with commodity WiFi devices. We design a
packet-level orthogonal backscatter modulation method to gener-
ate multiple orthogonal backscatter signals and support in-band
backscatter with ambient WiFi. We show that backscatter signals
can be e�ectively extracted even under strong in-band interference.
To work in real WiFi tra�c, we propose adaptive packet selection-
based modulation to guarantee the orthogonality of backscatter
signals. For parallel localization, we propose an iterative inter-tag
interference cancellation method and a location �ltering method
to remove location ambiguity. We theoretically analyze the e�ec-
tiveness of our method in supporting parallel tags. We prototype
Willow tags using low-cost hardware and implement Willow AP
on commodity WiFi NIC AX200. Through extensive experiments,
we show that Willow achieves a median localization error of 27 cm
and supports 51 parallel tags, which is 2⇥ and 17⇥ better than the
state-of-the-art method.
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1 INTRODUCTION
Backscatter communication enables low-power, low-cost, and ubiq-
uitous connectivity to the Internet of Things (IoT), such as smart

� Jiliang Wang is the corresponding author.

ACM ISBN 979-8-4007-0581-6/24/06
https://doi.org/10.1145/3643832.3661853

…

Tx Rx

Normal WiFi
Traffic

Backscatter 
AoA

Backscatter 
ToF

WiFi Device

Willow Tag

Backscatter Pattern

Figure 1: Willow provides parallel WiFi backscatter localiza-
tion for low-cost tags with commodity devices.

buildings, smart agriculture, and smart healthcare [1–11]. Many
IoT applications need to know the location information of backscat-
ter tags, which has encouraged advanced research in backscatter
localization [12–21]. Given the widespread of WiFi, WiFi backscat-
ter localization is considered a promising technology as it utilizes
ubiquitous WiFi devices to achieve localization for backscatter tags.
Moreover, with the continuous expansion of WiFi bandwidth and
the increment of MIMO scale, backscatter localization based on
WiFi signals can achieve increasingly higher accuracy.

There emerges an extensive collection of WiFi backscatter local-
ization techniques, with representative ones shown in Table 1. Ex-
isting works, however, have the following limitations: 1) Spectrum
e�ciency. To avoid in-band interference with excitation signals,
previous backscatter systems shift the frequency of the excitation
signal and make the backscatter signal out-of-band. For example,
WiTag [6] shifts the backscatter signal into a non-overlapped band.
However, considering tens, even hundreds of Mhz signal bandwidth
in WiFi, frequency-shifting will lead to low wireless spectrum ef-
�ciency and high tag power consumption. Batch localization [8]
utilizes OFDM modulation to obtain concurrent tag signals. How-
ever, maintaining orthogonality in OFDM requires a high-precision
oscillator to control the shifting frequency and is di�cult to achieve
on low-cost tags. 2) Strong excitation interference. Some works
try to do in-band backscatter localization. TagFi [7] toggles backscat-
ter tags and creates a new signal subspace based on the MUSIC
spatial spectrum calculation, which partially separates backscatter
signals from the excitation. However, the strength of the excitation
signal is typically magnitudes higher than the backscatter signal,
leading to inevitable residual interference with backscatter signals.
3) No parallel localization.WiTag [6] and TagFi [7] only work for
a single or very few tags. Batch Localization [8] supports parallel
localization for multiple tags but is not compatible with commodity
WiFi. In summary, none of the existing works achieves large-scale
parallel localization with low-cost hardware platforms.
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Table 1: Comparison with existing WiFi backscatter localization systems.

Low-power
tag

Parallel
localization

Low excitation
interference

Compatible with
COTS WiFi

Spectrum
consumption

WiTag [6] % % ! ! High
Batch Loc. [8] % ! ! % Medium

TagFi [7] ! < 4 Tags1 % ! Low

Willow ! !(> 50 Tags) ! ! Low
1 The localization error signi�cantly increases according to their evaluation.

This paper presentsWillow, the �rstWiFi localization system for
large-scale parallel low-power backscatter tags. As shown in Fig. 1,
Willow takes packets from commodity WiFi devices as excitation
signals. Instead of shifting signals out-of-band, a Willow tag only
toggles between two re�ection coe�cients according to a certain
pattern. The toggling rate is low to ensure low power consumption
and low complexity for tags. We design orthogonal patterns for the
re�ection coe�cients so thatmultiple backscatter signals alongwith
the excitation signal can be simultaneously received and separated
by commodity WiFi devices. The WiFi receiver analyzes the CSI
(Channel State Information) in the received packets, separates the
channel states of each tag, and calculates the locations of tags.

To turn the basic idea of Willow into reality, we need to address
the following key challenges:

First, how to extract backscatter signals under strong in-band inter-
ference of excitation signals? Typically, we can generate backscatter
signals by shifting the excitation signal out-of-band. This method
works well for low-bandwidth excitation signals (e.g., LoRa, Blue-
tooth, etc), but leads to high spectrum consumption and tag com-
plexity for high-bandwidth signals like modern WiFi. The time
division method cannot work here either. Because the backscatter
signal is always derived from the excitation signal, it’s impossi-
ble to assign di�erent time slots to them. We propose a packet-
level orthogonal backscatter modulation (POBM) method to embed
backscatter signals into ambient WiFi tra�c. We take a sequence of
WiFi packets as excitation signals, where all packets have the same
channel � . Willow tag re�ects WiFi signals with di�erent coe�-
cients, e.g., -1 and 1. By carefully designing the coe�cient pattern,
we can construct a sequence that is orthogonal with the excitation
signal and thus extract backscatter channels from excitation signals.
For example, assume the backscatter channel is ⌘ and the coe�-
cient pattern is ⇠%⌫ = [1,�1, 1,�1], the received CSI sequence will
be Ĥ(<) = [� ,� ,� ,� ] + ⇠%⌫ · ⌘ = [� + ⌘,� � ⌘,� + ⌘,� � ⌘],
given each backscatter coe�cient aligned with one WiFi packet.
We derive the backscatter channel as ⇠%⌫ · Ĥ(<) = 4 · ⌘. The tag
switches its coe�cient pattern at the packet level, which can be
easily achieved by low-power and low-complexity hardware.

Second, how to adapt to real WiFi tra�c and devices? To extract
the backscatter channel information, Willow requires orthogonality
among coe�cient patterns. Packets in real WiFi tra�c may not
accurately align with patterns in POBM. For example, there may
be no packets for modulation in some periods. This destroys the
orthogonality and leads to strong leakage from the excitation signal.
We �nd that the coe�cient pattern of the excitation signal is always

1, the backscatter tag only needs to create a pattern having an equal
number of coe�cients 1 and -1 to maintain the orthogonality. We
design a packet selection mechanism to actively select the desired
excitation packets, ensuring orthogonality between the backscatter
signal and the excitation WiFi signal. Meanwhile, practical WiFi
transceivers are not synchronized in time and frequency. It will
create packet detection delay and overall phase o�set, both leading
to phase discontinuity among packets and destroying the pattern
orthogonality. To settle this, we search for the best linear �t of the
packet detection delay and phase o�sets and then compensate them
among di�erent packets to achieve continuous phases.

Third, how to enable parallel backscatter localization? Some active
localization systems such as GPS [22] listen to downlink tra�c to en-
able concurrent localization. However, it requires the power-hungry
down-conversion on the tag. In the context of WiFi backscatter
localization, as the number of tags (uplinks) increases, the inter-
ference among tags signi�cantly increases and thus degrades the
localization accuracy. We design orthogonal POBM patterns for
di�erent tags, which can separate backscatter channels for each
parallel tag. Then, we use the estimated backscatter channels for
tag localization. To guarantee the orthogonality among backscatter
signals, tags need to be time-synchronized when toggling. How-
ever, due to the restriction of power consumption and hardware
complexity, some tags do not have synchronization circuits, which
will break the orthogonality of parallel coe�cient patterns. We
introduce a two-level channel separation scheme to achieve parallel
localization for unsynchronized tags. At the coarse level, we design
a pseudo-orthogonal POBM pattern such that di�erent tags can
be semi-orthogonal. Further, at the �ne-grained level, we propose
an iterative interference cancellation method that searches and
eliminates the strongest signal from the parallel transmissions, as
the strongest one is the least in�uenced. We also �nd that tags
with di�erent signal powers are typically not co-located, due to the
occurrence of similar multipath in nearby locations. We propose a
location �ltering algorithm to further decrease the interference. If
a tag with a strong power is detected in one location, we can make
sure that it will not be the location of the tag with a weak signal.

In summary, we have made the following contributions:
• WeproposeWillow, the �rstWiFi backscatter localization system

for large-scale parallel low-power tags. We design a packet-level
orthogonal backscatter modulation method to generate orthog-
onal in-band backscatter signals with ambient WiFi tra�c. We
analyze the requirements for maintaining the orthogonality be-
tween the tag and the excitation source and propose an active
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Figure 2: (a) Backscatter signal propagates along two paths to reach the Rx. (b) The MUSIC spectrum describes the signal
propagation delay. (c) Incident angles create phase di�erences among antennae. (d) The MUSIC spectrum describes the incident
angle. (e) The MUSIC spectrum describes both the time delay and incident angle.

selection method to adapt to real WiFi tra�c. Finally, we propose
an iterative cancellation and location �ltering method to achieve
parallel localization with the near-far problem.

• We prototype the Willow tag on a customized PCB board using
commercial low-cost o�-the-shelf circuit components. Willow
can seamlessly work in the existing WiFi networks. We evaluate
the performance of Willow extensively in di�erent scenarios.
The evaluation results show thatWillow achieves a 27 cmmedian
localization error and enables parallel localization for 51 tags.
Compared with the state-of-the-art, Willow achieves 2⇥ higher
localization accuracy and 17⇥ networking scale.

2 PRIMER
Signal propagation model.We �rst introduce the signal propaga-
tion model of WiFi backscatter. To emit the signal, a WiFi transmit-
ter (Tx) �rst generates an OFDM signal in the baseband. We focus
on the signal on one subcarrier as signals of other subcarriers go
through a similar propagation process. Assuming the data transmit-
ted is G , the baseband signal can be expressed as B (C) = G · 4 92c 5?C ,
where 5? is the subcarrier frequency. Then, the Tx upper-converts
the baseband signal with a high-frequency carrier as:

( (C) = B (C) · 4 92c 52C = G · 4 92c (5?+52 )C (1)

We �rst consider the LoS (Line-of-Sight) path of the backscatter
signal. As shown in Fig. 2(a), the WiFi signal arrives at the backscat-
ter tag with the attenuation U11 and delay g11 . The tag can switch
between di�erent states to modify the incoming signal and multiply
it with di�erent coe�cients, denoted as ~. Thus, the backscatter
signal is:

(⌫ (C) = ~ · U11( (C � g11 ) (2)

Similarly, the backscatter signal propagates to a WiFi receiver
(Rx) with another attenuation U12 and delay g

1
2 . Thus, the backscatter

signal received at the Rx is:

'⌫ (C) = ~ ·U11U12( (C�g11 �g12 ) = ~ ·G ·U11U124 92c (5?+52 ) (C�g
1
1�g12 ) (3)

Here we ignore the time, frequency and phase misalignments
between the Tx and Rx as they can be eliminated in the location

calculation. The Rx down-converts '⌫ (C) to the baseband by multi-
plying it with 4� 92c 52C as:

A⌫ (C) ='⌫ (C) · 4� 92c 52C

=~ · G · U11U124 92c (5?+52 ) (C�g
1
1�g12 ) · 4� 92c 52C

=~ · G · U11U124� 92c (5?+52 ) (g11+g12 ) · 4 92c 5?C
(4)

Then, the Rx applies FFT to A⌫ (C) and checks the ?C⌘ point to
get the channel of the backscatter signal:

⌘̂? = ��)? {A⌫ (C)} = ~ · G · U11U124� 92c (5?+52 ) (g11+g12 )

= ~ · G · ⌘?
(5)

where ⌘? = U11U
1
24

� 92c (5?+52 ) (g11+g12 ) is the channel of the backscat-
ter signal. When there are multiple signal propagation paths, the
estimated channel will be a linear superposition of multipath sig-
nals. For example, there are two propagation paths in Fig. 2(a).
The backscatter channel will be: ⌘? = U11U

1
24

� 92c (5?+52 ) (g11+g12 ) +
U11U

2
24

� 92c (5?+52 ) (g11+g22 ) . Here we neglect the re�ected signals (in-
cluding the signal scattered by other tags) scatter again as previous
works [2, 23, 24] do. Because they are too weak to capture in the
MUSIC spectrum.

Localization model. After extracting the backscatter channel
⌘? , we can locate the tag. The Rx can measure the wireless channel
at di�erent subcarriers and apply the MUSIC algorithm [25] to
the channel to obtain the CIR (Channel Impulse Response). CIR
describes the propagation delay of each signal path and can re�ect
the distance between tags and Tx/Rx. When there are multiple
signal paths, the MUSIC spectrum will exhibit them all, for example,
g11 + g12 and g11 + g22 in Fig. 2(b). Rx can also obtain AoA (Angle of
Arrival) information that measures the channel by the multiple
antennae. The phase (propagation distance) di�erences between
adjacent antennae are proportional to B8=(\ ), where \ is the AoA
of this path. As shown in Fig 2 (c) and (d), the incident phase
is shown as distinct peaks in the MUSIC spectrum [26]. Rx can
use the channel from both multiple subcarriers and antennae to
joint-estimate the ToF and AoA simultaneously [27, 28]. After Rx
obtains channel measurements in subcarrier #? and antenna #@,
⌘?,@ , it performs eigenvalue decomposition to the CSI matrix and
calculates the energy intensity for each ToF-AoA combination with
2D-MUSIC algorithm [29]. For example, in Fig. 2(a), there are 2
multipath, and the corresponding MUSIC spectrum will create two
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Figure 3: Tag toggles between two coe�cients to enable
packet-level orthogonal backscatter modulation.

separated spots lying in the pair of {g11 + g12 , \1} and {g11 + g22 , \2},
as shown in Fig. 2(e). We ignore the time misalignment between Tx
and Rx, as it can be calibrated by the distance and measured delay
between them. We only need to get the {ToF, AoA} pair with the
shortest time delay to identify the LoS path. With the LoS ToF, we
know the sum of the Tx-to-Tag and Tag-to-Rx distance. We can
then determine an ellipse based on the location of the Tx and Rx.
With the aid of LoS AoA, we can determine a ray starting from
the Rx. The intersection of the ellipse and ray is the tag location.
Willow can also use more Rx to �nd their intersection to provide
higher accuracy.

2.1 Challenges
The Backscatter channel is mixed with strong in-band ex-
citation interference. We assume that we could extract pure
backscatter channel ⌘. However, since Willow tags work in the
same frequency band with the excitation signal, the channel esti-
mated by Rx will be mixed with the excitation channel. Similar to
Eq. 5, the excitation channel is �̂? = G ·�? . In Fig 2(a), the channel
of excitation signal is �? = U134

92c (5?+52 )g13 . The hybrid channel
can be expressed as:

Ĥ? = �̂? + ⌘̂? = G · �? + ~ · G · ⌘? (6)

It is challenging to extract the backscatter channel from Eq. 6.
Compatible with real WiFi tra�c and devices.Willow tag

creates an orthogonality pattern to extract the backscatter channel
and try to avoid interference from the excitation signal. However,
real WiFi tra�c is not always uniform and desynchronization be-
tween transceivers will lead to the destruction of orthogonality
and leaked interference from the excitation signal. Considering the
greatly stronger power di�erence between backscatter and excita-
tion signal, which can be up to tens of dB [24], the residual error of
excitation will dramatically distort the estimation of the backscatter
channel and thus disable the localization.

Inter tag interference in parallel localization. In parallel
localization, there are more terms in Eq. 6 to be resolved. Willow
assigns di�erent orthogonality patterns to di�erent tags. However,
the time misalignments among tags also destroy the orthogonality.
To make matters worse, the tag with a stronger signal strength may
leak its channel value to the weaker ones, known as the near-far
problem. In lower-cost tags, this near-far problem is more di�cult
to deal with due to the lack of a synchronizationmechanism.Willow
should ensure the robustness of the system in this case.

3 WILLOW BASIC DESIGN
We �rst introduce how Willow works for a single tag and then
extend it to parallel localization in the next section.

3.1 Extract Backscatter Channel
To extract the backscatter channel ⌘, we need to separate it and the
excitation channel � from the hybrid channel measurement Ĥ. We
use the POBM scheme to achieve this.

We �rst see how a standard WiFi receiver estimates the wireless
channel. WiFi transmitters send packets sharing the same preamble
to enable channel measurement and calibration, known as LTF
(Long Training Field). In other words, the transmitted data G of
LTF in Eq. 6 remains unchanged for di�erent packets. In the WiFi
standard, the LTF is pre-de�ned for every subcarrier. Without loss
of generality, we assume the coe�cient in every WiFi packet is
set to 1, i.e., G is consistently equal to 1. In fact, G is either 1 or -1
for di�erent subcarriers in WiFi. But both cases can be normalized
to 1, which doesn’t a�ect the orthogonality in POBM. Therefore,
for the <C⌘ packet, the receiver estimates the channel based on
the LTF as �̂ (<) = G (<) · � = � . Then, we discuss how the
backscatter signal impacts the channel estimation. Backscatter tags
can toggle between two states, which introduces two di�erent
coe�cient values for each arrivedWiFi packet. For the<C⌘ incident
packet, the tag multiplies it by ~ (<) = {�1, 1} as shown in Eq. 2.
Note that even if the coe�cients are not -1 and 1, we can always
regard them as -1 and 1 with a DC o�set and linear scaling, without
a�ecting the orthogonality in POBM either. After superposing a
backscatter signal, the channel for the<C⌘ packet can be expressed
as ⌘̂(<) = ~ (<) · G (<) · ⌘ = ±⌘.

Signals in an actual WiFi channel contain both the excitation and
backscatter signals. Thus, the measured hybrid channel is Ĥ(<) =
� ±⌘. Our goal is to separate backscatter channel ⌘ from the actual
estimated channel Ĥ(<). As shown in Fig. 3, the coe�cients in
LTF compose a coe�cient pattern ⇠%⇢ = [1, 1, 1, 1]. Meanwhile,
the tag toggles the coe�cient for di�erent packets to generate
an orthogonal coe�cient pattern, e.g., ⇠%⌫ = [1,�1, 1,�1]. The
hybrid signal is the combination of these two patterns. For each
packet, the Rx estimates the hybrid channel and outputs a sequence:
Ĥ = ⇠%⇢ · � + ⇠%⌫ · ⌘ = [� + ⌘,� � ⌘,� + ⌘,� � ⌘]. To extract
backscatter channel ⌘ from the estimated Ĥ sequence, Willow dot
multiplies Ĥ with the prede�ned backscatter coe�cient pattern,
i.e., Ĥ · ⇠%⌫ = (� + ⌘) � (� � ⌘) + (� + ⌘) � (� � ⌘) = 4 · ⌘. By
normalizing the result, Willow gets the pure backscatter channel:
4·⌘
4 = ⌘. Similarly, by multiplying the received channel sequence

with the pattern corresponding to the excitation source⇠%⇢ , Willow
can get the pure excitation channel � .

With the POBM method, Willow can also capture the weak
backscatter channel. Due to the strong excitation interference, when
the tag toggles between two coe�cients, it only creates little in�u-
ence for the hybrid channel shown in Fig. 4(a). However, with the
POBM and according decoding method, we get the pure backscatter
channel estimation as shown in Fig. 4(b). Since the Willow tag only
needs to toggle from di�erent coe�cients in a packet level, regard-
less of the original bandwidth of the excitation signal, it ensures
low power consumption and hardware complexity on the tag. A
designed pattern here can also resist the dynamic environment.
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Figure 4: (a) CSI amplitude of hybrid channelwith backscatter
coe�cient 1 and -1 (b) CSI amplitude of extracted backscatter
channel.

Assuming there are walking people, it will also a�ect the hybrid
channel with certain patterns. The typical frequency of a human
walking is around 1.8 to 2 Hz [30]. Willow chooses a di�erent
toggling frequency from 20 to 100 Hz to avoid this interference [7].

3.2 Time Misalignment
The POBM method needs orthogonality between patterns, which
requires the excitation source and tag to transmit synchronically.
Willow could achieve this by setting the toggling rate of the tag the
same as the excitation packet sending rate. Ideally, even if the tag is
not synchronized with the excitation source, as long as the period
of them is the same, the Rx is still able to collect all the necessary
coe�cients. As shown in Fig. 5(a), the tag starts sending coe�cients
with a certain time o�set C1. If the tag can hold the current state
for exactly the same time interval, the next packet will be with the
targeted next backscatter coe�cient. The Willow tag can blindly
toggle its switch without a synchronization circuit.

However, as WiFi adopts the CSMA/CA mechanism where a
transmitter �rst detects the ongoing tra�c and delays its next
transmission accordingly, the interval between two adjacent WiFi
packets may vary. If the delay is too large, the tag may switch to
the next coe�cient. As shown in Fig. 5(b), the packet #2 is delayed
by �C . If �C is larger than the scheduled packet interval C1, then
the second coe�cient sent by tag is not -1, but 1. Correspondingly,
the second channel measurement Ĥ(2) is no longer the targeted
one � � ⌘, but is � + ⌘. The coe�cient pattern of the tag now is
[1, 1, 1,�1], which is not orthogonal to ⇠%⇢ anymore.

We qualify the distribution of delay in a practical wireless en-
vironment with an experiment. We use a commodity WiFi NIC
AX200 to send packets every 20ms in a laboratory. We analyze the
time intervals between adjacent packets by checking the timestamp
of received packets. The result shows that the maximum interval is
around 22ms, which means the extra delay can be up to 2ms.

However, we have a key observation here: the pattern of the exci-
tation signal is only composed of coe�cient 1, i.e.,⇠%⇢ = [1, 1, ..., 1].
Thus, for a backscatter pattern ⇠%⌫ = [⇠1, ..., ⇠ 9 = ±1, ...], the dot
multiplying with⇠%⇢ is the sum of every coe�cient, which is equal
to the number of coe�cient 1 minus the number of coe�cient -1:

⇠%⌫ ·⇠%⇢ = [1, 1, ...] · [⇠1, ...⇠ 9 = ±1, ...]
= ⇠1 + ... +⇠ 9 = ±1 + ...

= =D<(⇠ = 1) � =D<(⇠ = �1)
(7)

Tx

Tag
1 -1 1 -1 1 -1 1 -1

∆"

(a) (b)

"!

Figure 5: (a) Ideal case when Tx is transmitting packets uni-
formly. (b) There is a jitter for the second packet.

Thus, if the pattern is composed of the same amount of coe�-
cients 1 and -1, the result of Eq. 7 is 0, i.e., ⇠%⌫ is still orthogonal
with⇠%⇢ . The Rx can process the timestamp of each packet, through
which it can calculate the packet intervals and infer the coe�cient
value of each packet. Then, it can calculate the di�erence between
the number of coe�cient 1 and -1. In the example of Fig. 5(b), the
Rx will know the received backscatter pattern is [1, 1, 1,�1]. This
pattern has two more coe�cients 1. Willow only needs to select
the same number of coe�cient 1 to meet the number of -1 now. In
this case, Willow can pick any one of coe�cient 1 from the �rst
three packets and the coe�cient -1 from the last packet.

As the unexpected delay is randomly distributed, both coe�-
cients 1 and -1 have the same possibility of being transferred. The
mathematical expectation number of coe�cients 1 and -1 should
be equal. We further consider the expectation of the minimum
number of 1 and -1 (i.e., E [min (=D<(1),=D<(�1))]). Suppose we
have a pattern containing 2" coe�cients, and the possibility of
�ipping is 0, then the number of 1 or -1 follows the binomial dis-
tribution ⌫(", 2"0(1 � 0)). According to the central limit the-
orem [31], this distribution can be approximated to the normal
distribution # (", 2"0(1 � 0)). The probability density function

of the number of 1 or -1 as ? (G) = 1p
4c"0 (1�0)

4�
(I�" )2

4"0 (1�0) . By ex-

ploiting the symmetry of 1 and -1, we calculate the expectation
E [min(G1, G2)] = 2

Ø "
0 G? (G)dG . If the coe�cient number 2" is

100, even in the worst case that coe�cients �ip fully randomly
(0 = 0.5), we have this expectation to be 46. This means that more
than 90% (46 ⇥ 2/100) coe�cients can be selected to ensure an
equal number of 1 and -1. This also indicates that even for aperiodic
packets, such as burst data packets with fully non-uniformed time
intervals, its impact on Willow can still be eliminated by carefully
selecting orthogonal coe�cient patterns with low overhead.

3.3 Unsynchronized Transceivers
The excitation source generates the same packet header on the
baseband. Willow utilizes it and creates a coe�cient pattern full of
coe�cient 1. However, there are PDD (Packet Detection Delay) and
CFO (Carrier Frequency O�set) among unsynchronized commodity
WiFi devices [25, 28]. The PDD X will add an extra linear phase
2c 5?X into di�erent subcarriers in a packet. The CFO will cause an
overall phase o�set V when the transceivers up/down-converting
the baseband signals. Thus, the<C⌘ actual hybrid channel measure-
ment in subcarrier #? and antenna #@ of the Rx is:

Ĥ
0
?,@ (<) = Ĥ?,@ (<) · 4� 92c 5?X< · 4 9V< (8)
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Figure 6: (a) Tag doesn’t toggle during the transmission. (b)
Tag toggles during the transmission.

These two types of o�set are consistent for di�erent antennae
in the same packet because the di�erent receiving chains are syn-
chronized. But they vary among packets, which makes the pattern
of the excitation signal no longer all consist of coe�cient 1 and
ruins the orthogonality. To tackle this problem, Willow applies the
widely used CSI sanitization algorithm in MonoLoco [27], TagFi [7],
and SpotFi [28]. Willow �rst calculates the unwrapped phase value
�?,@ (<) of CSI measurement Ĥ

0
?,@ (<). Then, Willow �nds the best

linear �t and overall o�set value to cancel the residual o�set in the
unwrap phase:

[X̂<, V̂<] = argmin
d,b

%,&’
?,@=1

�
�?,@ (<) � 2c 5?d � b

�2 (9)

Then, Willow compensates the phase value in the measured
channel Ĥ

0
?,@ (<) by the estimated X̂< and V̂< , which gives us:

Ĥ
0
?,@ (<) ·4� 92c 5? X̂< ·4� 9 V̂< . This process eliminates the phase o�set

caused by unsynchronized transceivers. The excitation source is
still sending the pattern full of coe�cient 1 and is ready for Willow
to extract the backscatter channel.

3.4 Working with existing WiFi
Willow tag does not require a special packet format from the exci-
tation source and can tolerate time misalignment to the excitation.
Thus, Willow is completable with commodity WiFi transmitters.
For commodity WiFi receivers, they will apply standard channel es-
timation as described in Eq. 6. The tag path is regarded as a normal
multipath, which can be seamlessly captured by the WiFi hardware.
Thus, Willow is also completable with commodity WiFi receivers.

But for an unsynchronized Willow tag, there are two possible
situations for ongoing WiFi transmission. First, if the tag doesn’t
toggle state during the packet, as shown in Fig. 6(a). The commodity
WiFi Rx will process the header and get the channel estimation
Ĥ(1) = � + ⌘. For the payload, the baseband signal G30C0 will also
go through the same channel. Thus, the received data will be Ĥ(1) ·
G30C0 . By dividing the received data with the channel estimated by
the header, Rx recovers the original data: Ĥ(1) ·G30C0/Ĥ(1) = G30C0 .
This process is done seamlessly by the commodity receiver. So, it
won’t a�ect the excitation transmission.We note that because of the
short packet duration for active WiFi packets, the possibility of this
case is large. For example, if the duration of each coe�cient state for
the backscatter signal is 10 ms, and the duration of WiFi packets is
60 `s, the possibility for the second case is only 1�2 · 60 `B

10<B = 98.8%.
The second situation is tag toggles its coe�cient during the ongoing
packet, as shown in Fig. 6(b). Here we assume a representative

case in which the tag toggles its coe�cient after the header. The
estimated channel is Ĥ(1) = � + ⌘. But the undergo channel for
payload data is Ĥ(2) = � � ⌘. If the Rx tries to recover payload
data by Ĥ(2) · G30C0/Ĥ(1), there will be extra noise ⌘ in decoding.
We take advantage of the POBM method to avoid the impact of
backscatter signals on the decoding of normal WiFi packets. As
POBM can tolerate extremely low SNR backscatter signals, the
backscatter channel ⌘ can be regarded as a negligible noise term in
decoding a single packet. In a typical WiFi backscatter network, the
power di�erence between the source and tag is normally up to 40
dB [32]. For example, a WiFi packet with 20 dB SNR, an interference
source that is 40 dB weaker, only increases the BER by 2.6�5 with
256 QAM modulation [33]. For packets with 64-byte payload, the
PRR is only degraded by 0.16% [34]. Considering the possibility of
this case, the overall PRR loss 0.16% ⇥ (1 � 98.8)% = 1.92 ⇥ 10�5,
which is negligible.

4 PARALLEL LOCALIZATION
When there are multiple tags, Willow uses the POBM to separate
channels of parallel tags and locate multiple tags simultaneously.
To achieve this, Willow assigns di�erent orthogonal coe�cient pat-
terns to di�erent tags. Each tag toggles its states according to the
prede�ned coe�cient pattern. Then, the WiFi Rx collects the chan-
nel which contains an excitation and multiple backscatter channels.
With the carefully designed interference separation approach, Wil-
low Rx can get the pure channel for each backscatter tag. Finally,
Willow calculates the location for each tag based on the localization
model mentioned in § 2.

4.1 Synchronized Tags
We �rst focus on the case with synchronized tags, where tags and
the excitation source are time-synchronized. Thus, they can gen-
erate the arranged coe�cients in the same time slot, as shown in
Figure 7(a). In this case, we assign fully orthogonal patterns to
di�erent tags to cancel inter-tag interference. Considering the pos-
sible jitter from the sending time of excitation packets, we extend
the coe�cient duration at tags, promising each packet falls into
one coe�cient slot. Willow can achieve the synchronization by a
leader-follower mechanism [32, 35]. The excitation source wakes
the tag by a certain interval, tags will use a simple envelop detec-
tor to recognize the interval and set the common starting time of
patterns sending.

For example, there are two synchronized tags, as shown in
Fig. 7(a).Willow assigns two orthogonal patterns:⇠%1⌫ = [1, 1,�1,�1]
and ⇠%2⌫ = [1,�1, 1,�1]. Those two tags toggle coe�cients accord-
ingly and simultaneously. The hybrid channel Ĥ(<) now contains
both excitation channel � and two backscatter channels ⌘1 and
⌘2: Ĥ(<) = [� + ⌘1 + ⌘2,� + ⌘1 � ⌘2,� � ⌘1 + ⌘2,� � ⌘1 � ⌘2] If
we dot multiply the received channel Ĥ(<) with ⇠%1⌫ , we will get
the channel measurements of ⌘1. Similarly, we get ⌘2 by dot multi-
plying the channel sequence with ⇠%2⌫ . Willow adopts the widely
used Walsh code to generate the assigned patterns. In Walsh code,
it always contains the excitation pattern ⇠%⇢ which only consists
of coe�cient 1. Willow tags choose other patterns di�erent from
⇠%⇢ to keep the orthogonality.
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Figure 7: (a) Synchronized tags toggle simultaneously. (b)
Unsynchronized tags have a time o�set.

4.2 Unsynchronized Tags
Then, we look at the situation with unsynchronized tags. The lack
of time synchronization will break the orthogonality between the
assigned coe�cient patterns. As shown in Fig. 7(b), the pattern
for tag#1 now is ⇠%1⌫ = [0, 1, 1,�1], which is not orthogonal with
⇠%2⌫ = [1,�1, 1,�1]. The time asynchronization also exacerbates
the near-far problem. It makes the signal from tags with stronger
power strength leak to the weaker ones. A straightforward idea for
the near-far problem is to use a central AP to explicitly lower the
power of stronger tags [23]. However, unsynchronized tags cannot
receive down-link arrangements. We propose several designs to
ease the tag asynchronization-induced interference problem. First,
Willow uses the S-Kasami sequences to generate the pattern, which
is a "pseudo-noise" sequence and can lower the correlation between
unsynchronized patterns. Then, Willow adopts an interactive elimi-
nation method to further decrease the leaked signal. At last, Willow
adopts a location �ltering method to �lter out the unwanted loca-
tions caused by the residual leaked signal.

4.2.1 Iterative Elimination. We have a key observation here: the
signal of the strongest strength is typically least in�uenced by
other signals. Willow can calculate the channel of the tag with the
current strongest strength, and then cancel it in the hybrid signal
and proceed to the next round. This idea is widely used in multi-
signal separation [36, 37]. In Willow, however, we have a di�erent
restriction. In backscatter systems, due to more signal propagation
attenuation, the power of the excitation signal is typically several
orders of magnitude stronger than the backscatter signal [24, 32, 38].
Thus, the strongest terminal is always the excitation source with
the pattern consisting of all coe�cients 1. Even a small residual
error in the elimination process for the excitation source will spread
into the estimation of the backscatter channel and greatly degrade
the localization accuracy. Willow avoids this by always ensuring
the orthogonality between the excitation signal and the backscatter
signal. Here, Willow also adopts the active packet-picking method
in § 3.2. Moreover, we extend the one coe�cient duration according
to the scale of the network to lower the possibility of the coe�cient
�ipping caused by the jitter of excitation packets sending.

To be speci�c, after receiving a channel sequence containing
multiple tag signals with arbitrary time o�sets,Willow uses a sliding
window and the prede�ned pattern to �nd the strongest backscatter
signal. During this process, Willow also actively picks packets
to form backscatter patterns with equally distributed coe�cients

1 and -1 to avoid strong interference from the excitation source.
After extracting the current strongest backscatter channel, Willow
subtracts the channel value from the hybrid channel and encounters
the next round of calculation, till the channels of every tag are
obtained. The simulation results show our method can provide a
dynamic range of up to 60 dB.

4.2.2 Location Filtering. After using the quasi-orthogonal pattern
and iterative elimination, we lower the signal leakage among tags.
However, there is always residual error which will be leaked among
backscatter channel measurements. When applying dot multiplica-
tion of the channel sequence with the target pattern of a speci�c tag,
the residual error from other tags will be added to current channel
measurements. This phenomenon is essentially equal to adding
more multipath which accords to the location of those tags with
stronger signal strengths. When it acts on the MUSIC spatial spec-
trum, there will appear more pseudo peaks. Here we �nd a key fact
that the tag with a signi�cantly weaker power is more likely to be
far away from those with a stronger power. To �lter those pseudo
peaks, Willow �rst records the location of stronger tags. When
locating those weaker tags, there may appear an unwanted location
corresponding to those stronger tags. Willow actively ignores the
location that appeared before and picks the targeted location.

To be speci�c, Willow also follows the iterative style for location
�ltering. In each round,Willow always locates the current strongest
tag. It �rst checks all the possible locations corresponding to the
MUSIC spatial spectrum which exhibit hot dots. Then, it selects the
location among all the possible locations with the highest weight.
Initially, the weightF: of location : is set to the value ofF: = 1/3: ,
where 3: is the sum of Tx-to-: distance and :-to-Rx distance. The
initial weight design implies that Willow tends to choose locations
with a lower ToF value because the target LoS path is always the
shortest. In each round of �ltering, the selected target location
will refresh the whole area weight. For a location with weightF ,
whose distance from the selected location is⇡ , and the power of the
current strongest tag is % , the updated weightF

0
= F � %/⇡ . With

this proposed location �ltering method, Willow further decreases
the inter-tag interference.

5 IMPLEMENTATION
Willow Tags. We develop two types of backscatter tags: synchro-
nized and unsynchronized tags. Both use o�-the-shelf components
including an ADG902 [39] RF switch, a 2.4 GHz omnidirectional an-
tenna with a gain of 5 dBi, and an STM32L011D3P6 [40] low-power
microcontroller unit (MCU). The synchronized tags incorporate
an additional downlink detection module, which employs an en-
velope detector. The envelop detector contains a voltage doubler
recti�er circuit that can extract the envelope of the WiFi RF signal.
It employs Schottky diodes SMS7630-005LF [41], and a voltage com-
parator LPV7215 [42]. This envelope is then compared at a voltage
comparator with a pre-set threshold voltage. The comparator can
output high or low levels to indicate the presence or absence of
WiFi data packets. The tags achieve synchronization by recording
and matching the time intervals between WiFi packets. Because
Willow tag uses packet-level modulation The power consumption
for tags is around 108 `W.
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Figure 8: AoA error in the o�ce.
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Figure 9: AoA error in the open �eld.

0 1 2 3 4 5 6
Localization Error (m)

0

0.25

0.5

0.75

1

C
D

F

Willow
TagFi

Figure 10: Localization error in the o�ce.
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Figure 11: (a) Tag placement in the o�ce. (b) Tag placement
in the open �eld.

Excitation source and AP. The excitation source and AP are
x86 PCs with Intel AX200 [43]WiFi NIC.We use the PicoScenes [44]
to collect CSI measurements from 2 antennae and 489 subcarriers.
The Wi-Fi NIC is con�gured to operate on 2422 MHz with a band-
width of 40 MHz. All transceivers use 2.4 GHz omnidirectional
antennae with a gain of 5 dBi. The POBM method requires the re-
ceived training �eld of excitation signals to remain the same among
packets. Although the baseband value of this �eld is prede�ned
and �xed, we need to �x the transmitting power and the receiving
gain. It’s feasible for AX200 to �x the transmitting power, but we
can’t set the receiving gain. So, in our implementation, we �lter
out those packets with outlier magnitude. Other WiFi NICs which
provide a speci�c gain value or �xed receiving gain can also be
adopted here [45].

6 EVALUATION
6.1 Micro Benchmark
We evaluate the localization performance of Willow and compare it
with a previous work TagFi [7], a state-of-the-art WiFi backscatter
localization system with commodity WiFi transceivers. TagFi tog-
gles the tag and creates a new subspace from the excitation signal
in the same MUSIC spatial spectrum. We use the same hardware
design and the same amount of AP when conducting comparisons
with TagFi. The localization accuracy depends on many factors,
such as the multipath environment, AP (Rx) density, SNR, etc. In
this section, we test the performance of Willow with di�erent fac-
tors. Tag toggles with a coe�cient pattern of [1,�1, ..., 1,�1] with
a frequency of 100 Hz.

6.1.1 Angle estimation accuracy. We experiment in an indoor o�ce
to evaluate the angle estimation accuracy of Willow. We move one

tag to di�erent places and measure the angle estimation error in
the AP. The placement of tags and AP are shown in Fig. 11(a).
The tag is placed uniformly in this room, with some placement
where there are obstacles such as furniture between the tag and Rx.
At each place, according to the SNR of the backscatter signal, we
use 50 to 200 pattern length to calculate the backscatter channel.
We plot the CDF (Cumulative Distribution Function) of the angle
estimation error, as shown in Fig. 8. Willow achieves a median
angle estimation error of 6.3 degrees. However, TagFi su�ers from
strong in-band excitation signal interference, the median error is
10.7 degrees. We also observe that TagFi goes through a much more
severe long-tail e�ect. The 90C⌘ percentile tail error is 13.5 degrees
for Willow compared to 38 degrees for TagFi. This is because the
multipath relationship decides the amount of interference from the
excitation source. The error can be signi�cant in speci�c places.
We will evaluate this phenomenon in § 6.1.4. We also evaluate the
performance in an open �eld, in which the multipath is weaker, as
shown in Fig. 11(b). As shown in Fig. 9, the median error of Willow
and TagFi both decrease to 4.5 degrees and 7.4 degrees respectively.
Willow outperforms TagFi in di�erent scenarios.

6.1.2 Location estimation accuracy. Both Willow and TagFi can
�nd the intersection of multiple locating results from multiple APs
to infer the �nal location of the tag. In this experiment, we measure
the location estimation error. We place another three to four APs
on the random corner of experimental �elds. Each AP picks the
useful backscatter channel based on accordingly SNR. The average
distance between di�erent APs is around 9 m. The result for the
indoor o�ce is shown in Fig. 10, the median error of Willow is 57.5
cm. However, the median error of TagFi is 117 cm. The result for
the outdoor �eld o�ce is shown in Fig. 12. The median error of
Willow and TagFi is 27 cm and 54.4 cm respectively.

6.1.3 Accuarcy under di�erent AP densities. We put four or �ve
APs in the indoor o�ce to verify the impact of collaborative APs.
In this experiment, we extend the pattern length to 250 to make
sure every AP receives the backscatter signal with su�cient SNR.
The result is shown in Fig. 13. More APs will average the noise and
improve the accuracy. The median localization errors for Willow
decrease to 52.6 cm and 32.7 cm for four and �ve APs respectively.
For TagFi, the median localization errors are 116 cm and 66.5 cm.
We notice that there is more improvement for TagFi than Willow.
This is because, for TagFi, the geometrical relationship will greatly
in�uence the localization results for the backscatter tag. When
there are more APs, it will create various relative angles for the
excitation source and the tag. However, even Willow with four APs
still outperforms TagFi with �ve APs.
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Figure 12: Localization error in the open
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Figure 14: Localization error with di�er-
ent Source-to-Tag distance.
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Figure 17: AoA error with di�erent at-
tenuation on LoS path.

6.1.4 Impact of the geometrical relationship between tag and AP.
Willow extracts the pure backscatter channel by the orthogonal
coe�cient pattern with POBM. However, TagFi calculates the MU-
SIC spectrum for the backscatter signal with the presence of the
excitation signal. If the tag is closer to the source, the inferred AoA
and ToF for the tag and source are also closer. It means the peak of
the excitation signal will cover the backscatter signal more easily.
Thus, the geometrical relationship between tag and AP will in�u-
ence the localization results of TagFi greatly. We experiment in the
open �eld to evaluate this e�ect. We �x the distance between the
excitation source and the AP and gradually move the tag away from
the source along the dashed line in Fig. 11(b) to verify the impact
of the geometrical relationship of devices. The distance between
the tag and the source varies from 1 m to 6 m. As this distance
increases, the interference from the source will decrease. We mea-
sure the angle estimation error at each location. The results are
shown in Fig. 14. When the tag is close to the excitation source,
TagFi exhibits a high angle estimation error of more than 20 de-
grees. That is because the strong interference from the excitation
source masks and distorts nearby backscatter peaks in the MUSIC
spectrum. However, the error for Willow in this case is only 1.3
degrees. As the distance increases, the error of Willow also approxi-
mately increases because of the decrement of SNR. But for TagFi, its
error �rst falls abnormally and then increases. It shows that TagFi
is greatly in�uenced by the geometrical relationship between tag
and AP. However, Willow achieves lower error regardless of the
relative location of the tag.

6.1.5 Impact of pa�ern length. The length of the backscatter pat-
tern a�ects the SNR of the backscatter signal and the localization
accuracy. We �x the distance between the tag and source to 2 m
and change the length of the coe�cient pattern from 30 to 70. We
note that for higher localization accuracy or longer source-to-tag

distance, Willow does need a longer pattern length to achieve the
trade-o� between system performance and localization latency. In
this experiment, we measure the localization estimation error for
each length of the coe�cient pattern. The result is shown in Fig. 15.
When the length is only 30 packets, the localization error is 115 cm
for Willow. At the same time, the error for TagFi is however 178 cm.
As the length increases, the localization error decreases gradually
and �nally reaches 29.3 cm when the length is 70 packets. Willow
achieves lower localization error for any length of the pattern.

6.1.6 Pa�ern length for di�erent accuracy requirements. To verify
the required pattern length regarding the AoA estimation accuracy,
we examine the minimal needed length to achieve di�erent accura-
cies in the indoor o�ce. We place the tag 5 meters away from the
AP. We set the target accuracy from 10 degrees to 4 degrees, and
then we make the tag consistently output the coe�cient pattern
and record the minimal packets needed to achieve the target accu-
racy. The result is shown in Fig. 16. As the accuracy requirement
increases, Willow needs more packets to improve the accuracy.
From 10 to 9 degrees, we only need 6 extra packets. But it needs 42
packets from 5 to 4 degrees. We only test the performance ofWillow
here because it can achieve an accuracy of less than 4 degrees in
this experimental setting.

6.1.7 Impcat of obstacles. The obstacle between the excitation
source and the tag will decrease the signal strength of the LoS path.
Thus the spot of the multipath signal in the MUSIC spectrum will
make it easier to cover the spot of the target LoS path and decrease
the localization accuracy. After checking the indoor experiment
results in § 6.1.1, those results with large errors (the long-tail)
typically happen with the NLoS scenario. But even in this NLoS
case, Willow can still identify the direct path with weaker signal
strength by tracking the path in the 2-D MUSIC spectrum with the
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Figure 20: Tracking object trajectory.

shortest time delay like many previous papers do [2, 25, 28]. To
verify its impact, we conduct a trace-based simulation experiment
to verify the e�ect of obstacles on the localization accuracy. We
assume there are two paths, one of them is LoS path and the other
one is a re�ection path with a propagation of 3 and 6 m respectively.
Then we gradually add attenuation to the LoS path and check
the AoA estimation error to verify the impact of di�erent degrees
of obstacles. The result is shown in Fig. 17. Willow can support
accurate AoA results with 20 dB attenuation. Even with 30 dB
attenuation, the error is slightly increased to 5 degrees.

6.1.8 Impact of bandwidth. The bandwidth a�ects the localization
accuracy from the following two aspects. First, more subcarriers
(bandwidth) provide more diversity gain and thus increase the SNR.
Second, it also increases the ability to distinguish the multipath as it
infers a �ner-grained time delay pro�le. In this experiment, we set
the distance between the excitation source and the tag to 5 meters
in the indoor o�ce. Then we gradually increase the number of
used subcarriers from 230 to 480 and measure the AoA estimation
accuracy. The result is shown in Fig. 18. The error drops from 14.6
degrees to less than 2 degrees when using 230 and 480 degrees.

6.1.9 Packet selection. To evaluate the e�ects of the packet selec-
tion method to maintain the orthogonality to the excitation signal
described in § 3.2. We deliberately chose the case with unbalanced
numbers of coe�cients 1 and -1. We change the unbalanced number
from 0 (with our packet selection method) to 5. We set the source-
to-AP distance equal to the tag-to-AP distance. The incident angle
for the excitation signal is 0 degrees and the incident angle for the
backscatter signal is 45 degrees. We measure the angle estimation
as the unbalanced number increases. As shown in Fig. 19, when
the number of coe�cients 1 and -1 are equal, Willow outputs the
target angle estimation with low error. However, because of the
tremendous power di�erences between the excitation and backscat-
ter signal, even if there is just one more coe�cient 1, the leaked
energy in the formed nonorthogonal pattern will greatly distort
the estimated angle error to 11.5 degrees. When there are more
than 2 extra coe�cients 1, almost only the excitation signal can
be shown in the MUSIC spectrum, so the output result is the AoA
of the excitation signal, which has an error of approximately 45
degrees.

6.1.10 Tracking Objects. We move the tag across a U-shaped tra-
jectory in an open �eld (6 m in length and 3 m in width). And we
collect the location results by 4 APs at di�erent points along this
trajectory. We show the ground truth trajectory and corresponding

inferred trajectory by Willow in Fig. 20. Because of the high local-
ization accuracy, it allows us to faithfully capture the shape of the
ground truth trajectory.

6.2 Parallel Localization
In this section, we examine the parallel localization performance.
We �rst examine di�erent impacting factors to parallel localization
and then show the overall parallel localization performance in a
real-deployed testbed.

6.2.1 Near-far problem. Willow uses various methods including
orthogonal coe�cient, iterative elimination, and location �ltering
to mitigate the near-far problem. However, TagFi calculates the
location in the same MUSIC spectrum, in which the tag with a
weaker signal strength will be greatly in�uenced by a stronger one.
We experiment to evaluate the robustness of the near-far problem
for both systems.We �rst assign two orthogonal coe�cient patterns
to tag#1 and tag#2. Then, we set the incident angle of the tag #1
and #2 to 20 degrees and 60 degrees. The distance between tag
#2 and the AP is three times that of tag #1. We measure the angle
estimation error for tag #2 with and without tag #1. We also connect
tag #2 with 10 dB attenuation and test the error.We implement three
versions of Willow. The �rst one uses synchronized tags, called
Willow. The second one uses unsynchronized tags and with the
iterative elimination and location �ltering method, called Willow-I.
The third one uses unsynchronized tags and without those methods,
which is called Willow-II.

The result is shown in Fig. 21. When there’s only tag #2 transmit-
ting, it is marked as "1 Tag". Willow uses full orthogonal patterns, it
reaches nearly the same AoA estimation error of around 5.4 degrees
regardless of the presence of tag #1. Willow-I and Willow-II also
achieve similar accuracy. But for TagFi, even with 1 tag, it exhibits
a higher error of 10.4 degrees, due to the interference from the
excitation signal. With 2 tags, the estimation error grows to be 14.4
degrees. To make matters worse, after connecting the attenuator,
the errors for TagFi with 1 and 2 tags are 13.4 and 19.6 degrees
respectively, as shown in Fig. 22. For Willow, it achieves a similar
error of around 8.1 degrees with a single and two parallel tags. Be-
cause of the 10 dB attenuation, Willow-II is easier to be in�uenced
by the interference from tag #1, increasing the error to 8.7 degrees.
After applying our method, Willow-I achieves a similar error as
the case with only 1 tag. The results show that Willow has better
resistance to the near-far problem than the previous work.
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Figure 21: AoA error in placement 1 with
0 dB attenuation.
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Figure 22: AoA error in placement 1 with
10 dB attenuation.

Willow Willow-I Willow-II TagFi
0

5

10

15

20

25

Ao
A 

Er
ro

r (
de

gr
ee

s) 1 Tag
2 Tags

Figure 23: AoA error in placement 2 with
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8m

13 m

Figure 24: Placement of 51 parallel tags.
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Figure 25: Detected tag amount.
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Figure 26: Mean error.

6.2.2 Impact of the geometrical relationship between tags. We then
change the geometrical relationship between tag #1 and #2 to eval-
uate its impact. We keep the incident angle for tag #1 to 20 degrees
and set it for tag #2 to 30 degrees. Then we keep the distance be-
tween tag and AP the same for both tags. And we still measure the
AoA error for tag #2 with and without tag #1. The result is shown
in Fig. 23. Because of the same localization distance, there should
be less interference to tag #2. Willow and Willow-I indeed achieve
similar AoA estimation errors of around 6.5 degrees with and with-
out tag #1 transmission. Willow-II increases the error to 6.8 degrees.
However, for TagFi, the AoA estimation error is even larger when
there’s a stronger near-far problem. This is because TagFi calculates
the AoA in the same MUSIC spectrum. When the geometrical rela-
tionship is closer for tags, there will be more interference between
them. Willow is more robust for di�erent deployment situations.

6.2.3 Deployment in the Field. Finally, we deploy 51 tags in a meet-
ing room as shown in Fig. 24. The tags are assigned with di�erent
orthogonal patterns in advance. The excitation source and AP are
all commodity WiFi NICs AX200.

Tag detection.We �rst test if Willow can detect di�erent tags
with the assigned coe�cient pattern. We use a sliding window to
correlate the received CSI sequence with the prede�ned backscatter
coe�cient pattern and check if the absolute exceeds the threshold
value. Tag detection is the precondition of localization, and it can
also meet tasks such as object recognition. We test how many tags
can be detected with di�erent pattern lengths. The result is shown
in Fig. 25. With a pattern length of 384, Willow successfully detects
every tag linearly. With a pattern length of 128, as the number of
tags increases, Willow can detect more tags, but there is a greater
number of misread tags. Eventually, Willow detects 38 tags out of
51 tags with 128 pattern length. The pattern length of 384 will cause

bigger latency but provide a more robust tag detection function.
Thus, we use this pattern length to localize every tag.

Localization accuracy. In this experiment, we start with only
5 tags and gradually increase the number of tags to 51. Every time
there are a few more tags added to the network, we measure the
mean localization error. We use 7 APs to capture the backscatter
coe�cient pattern. We also develop di�erent versions of Willow,
which are Willow, Willow-I, and Willow-II, the same as in § 6.2.1.
The result is shown in Fig. 26. Theoretically, our method supports
as many tags as possible if patterns are orthogonal to each other.
With the full orthogonal patterns, Willow does achieve a similar
localization error of around 69 cm regardless of the number of tags.
However, the increase in unsynchronized tags will lead to higher
errors. For Willow-II, its error grows rapidly with the number of
tags. We �nd that even after there are only 10 tags, the localization
error of Willow-II has a sudden increase. It’s because there are two
tags with a very strong signal strength that consistently interfere
with others. Finally, it reaches a mean localization error of 119 cm
when there are 51 tags. With the method of iterative elimination
and location �ltering, Willow-I greatly reduces the localization er-
ror for Willow-II. It �nally reaches a mean error of 98 cm. However,
TagFi can’t provide parallel localization even for 5 tags. The maxi-
mum supported concurrent number is 3. Thus, Willow extends the
localization network by 17⇥ without a reduction in the accuracy.

7 RELATEDWORKS
Backscatter communication. Research on WiFi backscatter tech-
nology has attracted widespread attention in recent years. Hitch-
hike [32] embeds data on ambient Wi-Fi packets by converting the
excitation Wi-Fi codeword to another valid codeword. WiTAG [46]
alters the wireless channel to communicate data by leveraging
MAC-layer features. Wi-Fi Backscatter [47] transmits data bits by
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changing the RSSI of Wi-Fi packets. BackFi [48] and Hitchhike [32]
change the phase of the incoming Wi-Fi signal to transmit data
bits. Interscatter [49] uses a single-tone signal sent by a BLE de-
vice as an excitation signal to generate a legitimate Wi-Fi signal.
OFDMA Backscatter [50] and Digiscatter [51] enable OFDMA in
Wi-Fi backscatter tags. P2LoRa [24] designs a parallel backscatter
for ambient LoRa signal. Prism [52] scales the LoRa backscatter
networks with non-linear chirps. Some papers [53, 54] work on en-
abling CDMA for backscatter with single-tone excitation. We can’t
directly use the current CDMA method in WiFi networks. Because
the constraint in WiFi packet format and uniform distribution of
WiFi signal raises new challenges. Willow uses the speci�c pat-
tern design and interference cancellation method to adapt to WiFi
tra�c. SD-PHY Backscatter [55] enables software-de�ned PHY for
backscatter communication and can generate WiFi packets. Leg-
giero [35] uses extra spatial sounding features to embed data into
special format WiFi packets. OFDMA downlink [56] transforms
the digital demodulation approach into the �ltering-based analog
one. SyncScatter [57] achieves accurate synchronization with am-
bient WiFi signals and realizes the maximum possible sensitivity.
MOXcatter [58] embeds the tag data on ambient spatial-stream
packets. X-tandem [59] achieves multi-hop backscatter commu-
nication in WiFi networks. Freerider [60] frequency shifts and
transfers the code of ambient WiFi packets. TiScatter [61] encodes
backscatter data into the timespan between two WiFi codewords.
Chameleon [62] demodulates ambient WiFi and generates arbitrary
carriers into valid WiFi packets. Some papers work on compressive
sensing methods to recover the data sent by parallel tags [54, 63, 64]
for communication purposes. They distinguish the wireless channel
by the possibility from one state to another. As the number of tags
increases, the complexity of the algorithm grows exponentially.
Unlike Willow tags, the bits they send are de�ned by the pattern
in advance. So, we can obtain channel state by using the orthogo-
nality among patterns. So Willow can provide more accurate and
larger-scale backscatter localization.

Backscatter localization. To lower the power of tags, backscat-
ter localization systems use a variety of information to locate
backscatter tags. Tagoram [65] leverages the mobility of RFID tags
to construct a virtual antenna array to achieve precise localiza-
tion. RFind [4] and TurboTrack [14] compose a large bandwidth
of the backscatter signal from the RFID tag to enable 3D local-
ization. RF-IDraw [66] uses antennae with di�erent spacing to
achieve high-resolution RFID localization. TurboTrack [14] uses a
pipelined architecture and a Bayesian spacetime super-resolution
algorithm to provide �ne-grained localization. Millimetro [17] de-
signs a millimeter wave tag to achieve long-distance and high-
precision localization. P2PLocate [67] utilizes the assistant from the
backscatter tag to locate other WiFi devices. MetaSight [68] designs
a metasurface to read the NLoS RFID tags. `locate [1] combines
signals from multiple ISM bands to achieve accurate ToF estimation
of LoRa backscatter. LocRa [2] enables accurate LoRa backscat-
ter localization with spatially dispersed base stations. To achieve
more ubiquitous localization, recent studies utilize existing WiFi
devices to locate backscatter tags. WiTag [6] frequency shifts the
excitation signal and calculates the location of the tag in the new
band. TagFi [7] adapts a MUSIC-based algorithm to locate WiFi

backscatter tags. Batch Localization [8] assigns di�erent subcarriers
to di�erent backscatter tags for parallel localization.

8 CONCLUSION
We propose Willow, the �rst WiFi backscatter localization system
for large-scale parallel tags. We design a packet-level orthogonal
backscatter modulation method to embed backscatter signals into
ambient WiFi tra�c. We show that backscatter signals can be e�ec-
tively extracted even under strong in-band WiFi interference. To
adapt to real WiFi tra�c, we propose a packet selection method to
retain the orthogonality between backscatter signals and the WiFi
signal. For parallel localization with multiple tags, we eliminate the
inter-tag interference by an iterative signal cancellation method.
We remove the location ambiguity and improve localization ac-
curacy by designing a location �ltering approach. We prototype
Willow tags using custom low-cost hardware and use commodity
WiFi NICs (i.e., Intel AX200) as the excitation source and Willow
AP. The evaluation results show that Willow achieves a median
localization error of 27 cm and supports 51 parallel tags, which is
2⇥ and 17⇥ better than the state-of-the-art method.
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