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Abstract—LoRa is recently a rising star in Low Power Wide
Area Network (LPWAN) family to provide low power and long
range communication for large number of devices in Internet
of Things. LoRa is based on Chirp Spread Spectrum (CSS)
and uses chirp frequency shift to encode data. It has been
shown that collision significantly degrades LoRa performance in
practice. We propose FlipLoRa, a new mechanism to disentangle
LoRa collisions, which allows concurrent transmission of multiple
packets. The key idea of FlipLoRa is to utilize the quasi-
orthogonality between upchirp and downchirp. FlipLoRa encodes
packets with interleaved upchirps and downchirps instead of
only using upchirps as in LoRa. We then propose a novel
method to disentangle chirps and decode multiple collided
packets. To evaluate the performance, we formally prove the
quasi-orthogonality and analyze its applicable conditions. We
validate the performance improvement by theoretical analysis.
Further, we implement FlipLoRa on software-defined radio and
extensively evaluate its performance for real LoRa networks.
The evaluation results show that FlipLoRa can improve the
throughput by 3.84x over LoRa physical layer.

Index Terms—LPWAN, LoRa, CSS, collision decoding

I. INTRODUCTION

Recently, Low Power Wide Area Network (LPWAN) offers
a promising solution for Internet of Things (IoT) devices that
need long communication range (placed 1⇠10 km away from
gateway) and low power consumption (work for 10 years
without replacing battery). It has attracted much attention
from both industry and academia. Being high energy efficient
for embedded devices, LPWAN brings more opportunities to
IoT applications which require low power and long range
communication (e.g. smart agriculture, smart city, large area
wild animal monitoring, etc.). Many LPWAN technologies are
raised to suit such situations, such as LoRa, SigFox, NB-IoT
and RPMA [1], [2], [3], [4]. LoRa, as a promising competitor
in LPWAN family, is one of the representative LPWAN
technologies and has attracted many research efforts. LoRa’s
physical layer adopts CSS to achieve the goal of long range
communication. Chirp is a kind of signal widely used in many
areas, like radar, acoustics, satellite communications [5], [6],
[7]. LoRa uses linear chirp whose frequency changes linearly
with time. The energy of LoRa chirp could be accumulated
through an operation called dechirp [8], which overcomes the
attenuation of long range communication, with a tradeoff of
relatively low bit rate, normally 0.3 ⇠ 50 kbps.

LoRa is proposed to connect a large number of low data rate
IoT devices. However, practical LoRa deployments suffer from
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Fig. 1. FlipLoRa encoding and decoding mechanism

performance degradation due to collisions. Moreover, current
standard MAC layer protocol LoRaWAN adopts an Aloha-
like mechanism which aggravates collisions. This further limits
the capacity and scalability of LoRa network. To address the
problem, many efforts have been made. Choir [9] proposes a
physical layer collision separation mechanism by leveraging
hardware imperfection. The minor frequency offsets are used
to distinguish different packets and then improve throughput.
FTrack [10] exploits the time misalignment for the overlapped
packets to separate collisions. Applying these approaches in
practice, however, is still challenging as it is difficult to extract
the tiny features from low SNR LoRa signals.

We disentangle LoRa collisions from another novel perspec-
tive. Our key observation is the quasi-orthogonality between
upchirp and downchirp. An upchirp has a linearly increasing
frequency while a downchirp has a decreasing frequency.
In LoRa decoding for an upchirp symbol, after dechirping
by multiplying the upchirp symbol with a basis downchirp
(frequency from B

2 to �B
2 , B: Bandwidth), the energy of

the upchirp symbol is accumulated in frequency domain. Due
to quasi-orthogonality, while multiplying the upchirp symbol
with a basis upchirp (frequency from �B

2 to B
2 ), the energy

of the given upchirp is spread to the entire spectrum.
We propose FlipLoRa, a new encoding and decoding mech-

anism with interleaved up-down chirps to fully utilize quasi-
orthogonality in collision separation. Figure 1 depicts a simpli-
fied example of FlipLoRa with two collided packets A and B.
To decode those two packets, we first align the window with978-1-7281-6630-8/20/$31.00 2020 © IEEE
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one of the packets (e.g., A). Then we perform dechirping by
multiplying the collided signal in each window with the basis
downchirp. After FFT, in the first window, there should be
only one peak transformed from a part of chirp from packet
B. The energy of all other chirps is averaged in the entire
spectrum due to quasi-orthogonality. Similarly, in the second
window, there are two peaks after dechirping. The first peak
at f1 comes from the upchirp part of packet B. The second
peak at f2 comes from the chirp of packet A. Due to quasi-
orthogonality, we can see that packet B leads to a peak in each
window both at the same frequency f1, while packet A only
leads to one peak at f2 in the second window. Therefore, the
aligned packet has only a single peak in the second window.
Combining the peaks in both windows, we can decode the
chirp for packet A in the second window based on peak f2.
Similarly, we can also decode the chirps of packet A in other
windows by combining two consecutive windows. After that,
we can cancel chirps of packet A from the collided signal and
then decode the remaining packets.

Challenges: The practical design of FlipLoRa to disentan-
gle packets faces challenges. (1) The above decoding method
requires accurate window alignment for low SNR LoRa signal.
Meanwhile, carrier frequency offset (CFO), i.e., the frequency
offset among different devices, also impacts the decoding
accuracy. Moreover, the CFO measurement and window align-
ment are often coupled, both leading to peaks offset in the
frequency domain. (2) Chirp cancellation is required to reduce
cross chirp interference and to decode packets iteratively.
The traditional cancellation method is based on iterative
search, which has high computational complexity and a low
cancellation rate. For low SNR LoRa decoding, the residual
energy after cancellation may be amplified to considerable
packet decoding errors. (3) The quasi-orthogonality is related
to transmission parameters such as Spreading Factor (SF).
Low transmission SF may lead to a relatively low quasi-
orthogonality. Thus simply applying interleaved chirps does
not perform well under low SF.

To address the first challenge, we achieve accurate window
alignment and CFO measurement using combination of up-
down chirp pair preceding each packet. Our method decouples
the window alignment and CFO measurement. When the
decoding window is not aligned with a packet, the basis
upchirp and downchirp would lead to two different peaks
in the frequency domain after dechirping. If and only if
the decoding window is aligned with the packet, the basis
upchirp and downchirp lead to peaks in the same position.
Then the CFO can be measured by the peak offset when
the window is aligned. To address the second challenge, we
propose a frequency domain construction method for chirp
symbol cancellation. Considering the low SNR signal, our
main idea is to accurately reconstruct the chirp signal based
on the frequency domain information and then subtract the
signal from the time domain. Our method costs about constant
computation time and can reduce the energy of signal by up
to 30dB. To address the third challenge, we design a multi-
dimensionality based decoding method by combining features

(a) (b) (c) (d)

Fig. 2. Chirp symbols of LoRa modulation with SF=2. (a) Symbol for ‘00’.
(b) Symbol for ‘01’. (c) Symbol for ‘10’. (d) Symbol for ‘11’.

from different aspects such as magnitude and phase together
with quasi-orthogonality.

The performance of FlipLoRa is validated and evaluated
by theoretical analysis, simulation and real experiments. We
implement FlipLoRa on software-defined radio (SDR) boards,
a single antenna USRP N210 gateway and multiple HackRF
One nodes. Our evaluation results show that FlipLoRa achieves
a throughput gain of 3.84x over original LoRa. Furthermore,
the design of FlipLoRa can be easily extended to existing
hardware since LoRa chip supports sending both upchirp and
downchirp.

Contributions: Our contributions are three-fold: (1) We
formally analyze the quasi-orthogonality between upchirp
and downchirp. To the best of our knowledge, the quasi-
orthogonality between upchirp and downchirp has not yet
been thoroughly discussed in LoRa. (2) We propose two
novel methods for CFO elimination and symbol cancellation.
They are ubiquitous methods and could be used in other
CSS based work. (3) We propose a new coding mechanism
FlipLoRa to disentangle collisions. We validate the perfor-
mance of FlipLoRa by theoretical analysis, simulation and
SDR implementation. Our experiments show that FlipLoRa
improves throughput by 3.84x.

II. BACKGROUND

LoRa uses Chirp Spread Spectrum (CSS) for modulation
and demodulation. A basic baseband LoRa symbol with unit
power can be expressed as

chirp(t) = exp

✓
j2⇡

B

2T
t(t� T )

◆
(1)

where B is the bandwidth of chirp and T is the duration of
one single chirp. Due to the anti-interference feature of CSS,
LoRa achieves long range while sacrificing its data rate. An
important parameter of LoRa to control data rate is Spreading
Factor(SF), whose definition is

2SF = B · T. (2)

SF determines the frequency changing rate of a chirp. For a
larger SF, the time duration for a chirp is longer given the
bandwidth B.

Note that chirp(t) is an upchirp whose frequency increases
linearly with time while the complex conjugate of chirp(t) is
a downchirp whose frequency decreases linearly with time.

The strategy of LoRa to encode data is shifting the ba-
sis chirp in time-frequency domain. For instance, Figure 2
depicts the LoRa encoding scheme when SF=2. Figure 2(a)
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Fig. 3. Dirichlet kernel. (a) p = 1, SF = 7, N = 128,m = 30. (b)
p = 2, SF = 7, N = 256,m = 30.

is an unshifted basis upchirp and encodes data bits “00”.
Figure 2(b)(c)(d) shifts the start frequency of the symbol to
�B

4 , 0,
B
4 and encodes “01”, “10”, “11” respectively.

To understand the decoding operation, we need to discretize
Equation (1). Let sampling frequency fs = B ·p, where p is an
integer. Let t = n

N T, n = 0, 1, 2 · · · , N�1 where N = 2SF ·p.
Then a chirp can be represented as

!0(n) = exp

✓
j2⇡

n(n�N)

2Np

◆
. (3)

Denote !m(n),m 2 {0, 1, · · · , 2SF � 1} as the mth cyclic-
shifted form of basis LoRa chirp. Then we have

!m(n) = exp

✓
j2⇡

n0(n0 �N)

2Np

◆
!⇤
0(pm) (4)

where n0 = (n+pm) mod N , ⇤ denotes complex conjugate.
The constant !⇤

0(pm) makes \!m(0) = 0 and thus ensures
the phase continuation between adjacent chirp symbols.

The task for receiver is to extract the decoded information,
i.e. m. The decoder first multiplies the symbol with a basis
downchirp with starting frequency at B

2 .

!m(n) = !m(n) · !⇤
0(n). (5)

Notice that m,n are integers and exp(j2⇡ · integers) = 1.
!m(n) could be expressed using rectangular window function

!m(n) = s1(n)r1(n) + s2(n)r2(n), (6)

where s1(n) = exp( j2⇡mn
N ), s2(n) = s1(n) exp(

�j2⇡n
p ),

r1(n) = rect0,N�pm�1(n), r2(n) = rectN�pm,N�1(n). The
definition of rectangular function rect is

recta,b(n) =

(
1, a  n  b

0, otherwise.
(7)

Then we apply Discrete Fourier Transform (DFT) to !m(n),
the kth output is

F(!m)k = F(s1 · r1)k + F(s2 · r2)k
= d1DN�pm(k �m) + d2Dpm(k �N �m+ 2SF )

(8)

where DL(k) = sin(⇡kL/N)
sin(⇡k/N) is Dirichlet kernel, d1 =

exp(j⇡(N � pm� 1)(m� k)/N), d2 = d1 exp(j⇡(m� k �
(N � 2SF )(pm+1)/N)). Equation (8) is an important result
and we will use it in Section IV-D for symbol cancellation.

We see from Equation (8) that the transformation of a LoRa
chirp produces two FFT peaks (except basis chirp). Each
represents a chirp segment in a LoRa symbol. The amplitude
of each segment in frequency domain is a Dirichlet kernel and
the phase is linear. An example image of Dirichlet kernels
with parameter setting SF = 7,m = 30 is shown in
Figure 3. The main peak position of DN�pm(k � m) and
Dpm(k�N�m+2SF ) is m and N+pm�2SF . If p = 1, we
have m = N+pm�2SF . Then the two Dirichlet kernels would
share the same main peak position as shown in Figure 3(a).
Otherwise, they are separated like Figure 3(b). The decoder
could extract the encoded data m by searching the peak index.

III. UP-DOWN QUASI-ORTHOGONALITY

Section II describes the decoding process of an upchirp.
Relatively, the decoding rule for downchirp is a conjugate
replication of upchirp, i.e., the incoming symbol is multiplied
with !0 instead of !⇤

0 . We define two operations to represent
the decoding process for the two kinds of chirp:

U(!) = F(! · !⇤
0)

D(!) = F(! · !0).
(9)

U represents upchirp decoding and D represents downchirp
decoding. For an upchirp, applying U accumulates its energy
and leads to a peak in frequency domain. However, for a
downchirp, the energy after U is spread over the whole
spectrum. As a result, the decoding result of an upchirp
would not change with the existence of downchirps. Next,
we theoretically analyze this feature, i.e., quasi-orthogonality
between upchirp and downchirp.

The quasi-orthogonality means U(!up + !down) gives the
same decoding result of U(!up) 1. Without loss of generality,
we only prove the situation where !up = !0,!down = !⇤

0 and
p = 1.

If !⇤
0 is sent but we try to decode it with U , the output is 2

U(!⇤
0)k =

(
2

SF+1
2 exp

⇣
j⇡
4 � j⇡k2

2SF+1

⌘
, 2 | k

0, 2 - k.
(10)

According to Equation (8), U(!0)k = d1DN (k). Because of
the linearity of Fourier Transform, U(!0 + !⇤

0) = U(!0) +
U(!⇤

0). Thus we have

argmax
k

|U(!0 + !⇤
0)k| = argmax

k
|U(!0)k| = 0. (11)

Therefore, U(!up + !down) has the same decoding result “0”
with U(!up) and the quasi-orthogonality is proved.

IV. FLIPLORA DESIGN

A. FlipLoRa In A Nutshell
In this section, we provide an overview of FlipLoRa’s main

idea and show how to utilize the quasi-orthogonality in LoRa
for collision separation. Figure 4 gives an example of the

1Here we suppose upchirp and downchirp have the same power. The quasi-
orthogonality does not hold when the energy gap is too large.

2We leave the calculation details in Appendix A.
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Fig. 4. (a) LoRa collision. (b) FlipLoRa collision.

difference between LoRa and FlipLoRa collisions. The bottom
part of Figure 4 indicates the output of upchirp decoding or
downchirp decoding. The main difference between LoRa and
FlipLoRa is that FlipLoRa uses interleaved chirps (upchirp
followed by downchirp, and vice versa) to encode data while
LoRa only uses upchirps (or downchirps). Intuitively, this
design achieves the same coding rate with the original LoRa.
We show that such a coding design enables better collision
separation ability. To understand the key idea, it is essential to
know the problems in current LoRa decoding with collisions.

According to the decoding process discussed in Section II,
LoRa searches the highest peak in each FFT window and
takes it as the decoding result. In the presence of collisions,
there will be more peaks in a single window. For example,
in Figure 4(a), three packets collide. The decoding window is
aligned with the blue one. When using operation U to decode
the blue packet, we find that there are too many peaks in the
FFT result. Therefore, it is difficult to divide peaks into groups
and map peaks to different packets.

When we switch to Figure 4(b), we find that with Fli-
pLoRa, nearly one-third of the peaks disappeared due to quasi-
orthogonality. To extract the correct symbol, FlipLoRa applies
operation U (or D) on two consecutive windows. As shown in
Figure 5(a), the first red upchirp spans over window (I) and
(II). The segment in window (I) after operation U transforms
to a red peak y1 (xi and yi indicate the FFT bin index).
The segment in window (II) after operation U changes to a
relatively lower red peak y1. We can see that two segments
of an upchirp transform to two peaks at the same position in
the frequency domain after operation U . Meanwhile, our target
blue chirp is aligned with a decoding window and it does not
generate a replica peak in window (II). From window (I), we
have a peak set peaks1 = {x1, y1}. From window (II), we
have a peak set peaks2 = {y1}. peaks1 � peaks2 = {x1}
gives the final decoding result. Similarly, by replacing D with
U , we could decode downchirp encoded data as shown in
Figure 5(b).

In the rest of this section, we focus on how to leverage
the basic idea of FlipLoRa to develop a practical collision
decoding framework:

• Window alignment: FlipLoRa decoding method requires
the current decoding window to align with a packet.
The challenge for alignment comes from CFO, which
cannot be ignored in real environments. Under collision,

U U

x1 y1 y1

��� ���� ����� ����TO

(a)

DD

x2y2 y2

��� ���� ����� ����TO

D

(b)

Fig. 5. (a) FlipLoRa decodes blue upchirp in collision. (b) FlipLoRa decodes
blue downchirp in collision.

it becomes much more difficult for accurate window
alignment because different packets have different CFO.
We propose a CFO elimination algorithm utilizing up-
down pair and optimize it for collision situation.

• Packet tracking: Once a window corresponding to a
packet is aligned, we need to track all the symbols
belonging to the packet. Our main method is based on
quasi-orthogonality. We find that tracking error can be
reduced with the assistance of multi-dimensional infor-
mation like signal magnitude and phase. We combine
quasi-orthogonality and multi-dimensional information to
accomplish the packet tracking algorithm.

• Symbol cancellation: Near-Far problem exists in Fli-
pLoRa communication, i.e., strong signals would mask
weak signals. Our solution is extracting and canceling
symbols while decoding.

Figure 6 shows the block diagram of FlipLoRa. It is
composed of three main blocks: window alignment, packet
tracking and symbol cancellation. FlipLoRa decoder first
consumes IQ sequence of the signal and tries to find the
preamble. The preamble detection is done by calculating the
correlation of the pre-constructed ideal preamble and the real
received signal. Once we detect a correlation value larger than
a threshold, the decoder switches to window alignment mode.
After the packet is aligned with the decoding window, the
decoder starts to track symbols belonging to the same packet
with quasi-orthogonality and multi-dimensional information.
During packet tracking, decoded symbols are canceled from
the received signal. If a stronger signal is detected, we push
the current packet into a LIFO called Unfinished Packet List
and start to locate the preamble of the stronger signal.

B. Window Alignment
An important feature of linear chirp is that the time offset is

equivalent to frequency shift. Therefore, a misaligned window
causes the FFT peak shift and thus leads to wrong data.
If the start time t of a packet is not accurately measured,
we obtain a measurement of t � TO where TO is the
Time Offset. Then all our data symbols are shifted due to
TO, i.e., !m becomes !m�round(TO

T
). For a LoRa packet,

time offset for data symbol could be calibrated by referring
the preamble peaks since preamble experiences the same
offset and is already known. However, the calibration fails
when collisions occur because we could not distinguish peaks
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Fig. 6. FlipLoRa block diagram

from different packets. When CFO is considered, shifted data
symbols become !m�round(TO

T
)+round(CFO

B
). It is difficult to

distinguish the frequency shift caused by time offset together
with CFO.

We leverage the up-down chirp pair for CFO elimination
and window alignment. LoRa physical layer packet naturally
provides such a pair. Preamble contains basis upchirps and
SFD (Start Frame Delimiter) contains basis downchirps. Fig-
ure 7 shows the principle of up-down alignment. If TO = 0 and
CFO = 0 (Figure 7(a)), both up peak and down peak locate
at the first FFT bin when the window is aligned with the up-
down chirp pair. If TO 6= 0 and CFO = 0 (Figure 7(b)), the
peak of upchirp shifts to left (cyclic shift) and the peak of
downchirp has an equal-sized right shift. If TO = 0 and CFO
6= 0 (Figure 7(c)), up peak and down peak are shifted in the
same direction. If TO 6= 0 and CFO 6= 0, the combination of
TO and CFO results in Figure 7(d). We derive that the packet
is accurately aligned if and only if the up peak and the down
peak are both located at the same FFT bin.

The above method solves how to align a single packet.
However, it is challenging to conduct window alignment under
collisions since pairing upchirp and downchirp is a problem.
Our strategy is first shifting the preamble peak to position 0.
Assume |CFO| < CFOlimit, the bin shift caused by CFO has
an upper bound

binshift < � =
CFOlimit · 2SF

B
(12)

According to the alignment method, the occurrence of the
related downchirp peak will be located at [0, 2�] [ [2SF �
2�+1, 2SF ]. As � is usually much less than B, there is a high
probability that only one downchirp peak in such an interval
satisfies our requirements. Using this up-down pair eliminates
the CFO of the current decoding packet.

C. Packet Tracking

When a packet is aligned, we begin to track its data
symbols. The way to extract them is using quasi-orthogonality
as discussed in Section IV-A. However, the set subtraction
would not always succeed due to interference and noise.
Peaks may be masked by imperfect symbol cancellation (will
be discussed in Section IV-D). Therefore, we propose the

DU
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U

(b) Misaligned w/o CFO

+TO

CFO-TO
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CFO+TO

D

0

(a) Aligned w/o CFO

U

0

D

(c) Aligned w/ CFO

U

CFOCFO

TO

TO

Fig. 7. Up-Down pair alignment and CFO elimination

concept of peak distance to improve the accuracy of quasi-
orthogonality decoding. We denote the peak set after operation
U (or D) in current decoding window as peaksC . The peak set
after the same operation in the left (right) window is called
peaksL (peaksR). The target peak bin index x in peaksC
would be

x = argmax
x2peaksC

min(dist(x, peaksL), dist(x, peaksR)) (13)

where

dist(x, peaks) =

(
min

x02peaks
|x� x0| , peaks 6= ?

+1, peaks = ?
(14)

Take Figure 5(b) as an example, peaksC is the peak set
{x2, y2} in window (II) and peaksR is the peak set {y2}
in window (III). Since there is no peak in window (I),
peaksL = ?. According to Equation (13) and (14), we have
x = x2, which means x2 is what we require in current window.
In real deployments, the peak index would be distorted by in-
terference and noise. Our goal is to find the best-fit peak index.
Suppose peaksR has a small distortion and becomes {y2+1}
(the peak index is not stable), the above calculation still gives
x = x2 which strengthens the reliability of FlipLoRa.

Besides the quasi-orthogonality feature, multi-dimensional
information is also exploited for packet tracking. The wireless
channel is considered to be static during a short packet
transmission time, and thus the received signal power is stable.
In FFT results, peak height represents power level. Therefore
we can track peaks of the packet based on their power level,
i.e., peak height.

At the implementation level, to get an accurate peak height,
a technology called zero-padding is needed. Before doing FFT,
we append (r� 1)N zeros to the signal where r is an integer
representing zero-padding ratio. As shown in Figure 8(b), zero-
padding increases the frequency resolution. If zero-padding
is not adopted, a large peak height fluctuation would occur.
Figure 8(a) shows the non-zero-padding condition. The red
dots are the output of FFT and their maximum modulus does
not reflect the actual Dirichlet magnitude.
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D. Symbol Cancellation

Every time we extract a symbol in an aligned window,
we cancel it from the received signal Sr. On one hand, it
reduces the number of peaks and enables the decoding for
other packets. On the other hand, it solves the near-far problem
because high power signals are canceled iteratively. Suppose
we want to cancel the symbol !m, a traditional way is to
construct a similar symbol as Sc = Aej(2⇡�ft+')!m where
A is amplitude, �f is the estimation of CFO and ' is the
initial phase. We can estimate parameters A⇤,�f⇤,'⇤ through
solving the optimization problem below

(A⇤,�f⇤,'⇤) = argmin
A,�f,'

R(A,�f,'), (15)

where R(A,�f,') = ||Sr�Sc|| is residual energy. However,
such method has three drawbacks:

• It is a search-based method and relies on multiple itera-
tions. The computation complexity is high.

• The result may be a local minimum and the symbol is
not completely canceled.

• The calculation of residual energy does not consider the
high sensitivity of CSS. Since LoRa works under low
SNR, the variation of time domain energy may be small
even if the symbol is correctly canceled.

To overcome these drawbacks, we propose a novel fre-
quency domain construction method with very low complexity.
The method can cancel the signal by up to 30dB and reduces
the energy of the signal to noise level. The goal of symbol
cancellation is to minimize the residual chirp influence after
operation U/D, i.e., the residual peak height. We can directly
construct a peak in frequency domain and then subtract the
peak from real signal FFT results to check the cancellation
effect. If the cancellation suits requirements, we can apply
inverse fourier transform to obtain a time domain constructed
signal. According to Equation (8), a LoRa symbol in frequency
domain is one or two Dirichlet kernels with linearly changing
phases. The peak heights of the two Dirichlet kernels vary
with encoded data m. We choose the higher one, say, P . The

peak P with apex index x0 has form

P = �(k)D(k) = �(k) ·A · sin (⇡(k � x0)L/N)

sin (⇡(k � x0)/N)
(16)

where �(k) is a linear phase sequence and Dirichlet kernel
D(k) represents the peak amplitude. Figure 8(c) shows the
local view of a peak. In real experiments, the apex (x0, h0)
of Dirichlet kernel does not accurately locate at an FFT bin
as shown in Figure 8(c). Solid red dot (x1, h1) and (x2, h2)
are real frequency sample points while the actual apex, hollow
red dot (x0, h0) is not. According to Equation (16), we have

A · sin (⇡(x1 � x0)L/N)

sin (⇡(x1 � x0)/N)
= h1 (17)

A · sin (⇡(x2 � x0)L/N)

sin (⇡(x2 � x0)/N)
= h2 (18)

Since N is large, sin (⇡(xi � x0)/N) ⇡ ⇡(xi � x0)/N .
Denote �x = x0 � x1 2 [0, 1

r ], after applying approximation
and triangular expansion to the ratio of Equation (17) and
Equation (18), we have

�x

✓
sin

⇡L

rN
cot⇡�x+

h2

h1
� cos

⇡L

rN

◆
=

h2

h1
· L

rN
(19)

The above equation can be solved by numerical methods
with a small overhead. After we derive �x, the amplitude
is calculated as A = h1⇡�x

N sin(⇡�xL/N) . Till now, the Dirichlet
kernel is successfully constructed as

D(k) =
h1⇡�x

N sin (⇡�xL/N)
· sin (⇡(k � x1 ��x)L/N)

sin (⇡(k � x1 ��x)/N)
.

(20)
Then we need to estimate '(k). According to Equation (8),
the FFT bin phase of an ideal LoRa chirp is linear. Thus '(k)
could be derived by interpolation with the phase of bin x1 and
x2. Hence one constructed chirp can be expressed as Sc1 =
IFFT (� ·D)/!⇤

0 . Similarly, we get another constructed peak
Sc2. The final constructed chirp symbol is

Sc = Sc1 + Sc2 (21)

The above frequency domain construction method costs nearly
constant time and the constructed symbol is accurate due to
the utilization of Equation (8).

V. EVALUATION

A. Simulation
In our settings, the number of concurrent nodes is called

Parallel Degree (PD). Every node sends a given packet. We
analyze the Symbol Error Rate (SER) and Bit Error Rate
(BER) of a decoded packet. SER is the number of error
symbols decoded with respect to total numbers. BER is the
number of bit errors with respect to total bits. To make PD
nodes collide in the worst situation, we apply a high duty
cycle, i.e. 0.5, in the simulation.

First, we evaluate the performance of FlipLoRa under dif-
ferent Signal-to-Noise Ratio (SNR) environments. We define
four SNR levels for the experiments: high SNR (> 15dB),
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Fig. 9. (a) SER under different SNRs (b) BER under different SNRs (c) Exploring the parallel degree limitation of FlipLoRa on uniformly distributed packets
(SF=12, Middle SNR, CR= 4

7 ). (d) FlipLoRa’s Maximum parallel degree supported by different SFs within 10% BER (SF=12, Middle SNR, CR= 4
7 ).

middle SNR (5 ⇠ 15dB), low SNR(�5 ⇠ 5dB) and extremely
low SNR(< �5dB). To simulate real packet collisions, we
randomly set the transmitting power for each node in the
range of SNR setting. In this experiment, we set the packet
length to 21 bytes. The packet is sent with SF = 12, CR =
4
7 (coding rate), B = 125kHz. Thus each packet has 43
symbols according to [11]. Figure 9(a) and (b) show the SER
and BER with different PDs. One nature observation is that
both SER and BER increase with the increase of PD. That is
because a larger PD brings a higher probability of shorter time
offset in FlipLoRa decoding. Within a reasonable error rate,
we find that FlipLoRa supports 10 concurrent transmissions.
Besides, Figure 9(a)and (b) also reveal that the performance
of FlipLoRa is not sensitive to SNR, except extremely low
SNR. Since we select CR = 4

7 , (7, 4) Hamming Code is used
to correct 1-bit error. Thus, BER is usually lower than SER.

SF impacts the performance of FlipLoRa. Figure 9(c) shows
the relation of BER and PD under different SFs with param-
eters setting: Middle SNR, SF=12, CR= 4

7 . We find that it is
consistent with our observation in Section III. Since higher SF
provides better quasi-orthogonality, FlipLoRa performs better.
To explore the max PD FlipLoRa supports, we create an ideal
environment that all packets are uniformly distributed, which
means the chirp offset is constant. The results in Figure 9(d)
show that FlipLoRa could allow more than 10 concurrent
transmissions. Even if in the extremely low SNR, FlipLoRa
supports 5+ parallel degree.

B. Performance in Real Deployment
We implement FlipLoRa on the software-defined radio

platforms. As shown in Figure 11, the FlipLoRa gateway is
implemented on a high-end software-defined radio (i.e. USRP
N210) with a single TKX-470LC antenna. The end nodes are
implemented on the low-cost HackRF One with a RaspberryPi.
Both the FlipLoRa gateway and end nodes operate at 470MHz
with a bandwidth of 125kHz. They can also work at any
legal LoRa band depending on the configuration of users.
We develop our FlipLoRa transceiver based on the GNU
Radio library and implement FlipLoRa decoder on MATLAB.
By default, we use the spreading factor and coding rate
of FlipLoRa communication as 12 and 4

7 respectively. The
sampling rate of the USRP is set to 1 MHz. We place the
FlipLoRa gateway on the roof of a building and distribute end
nodes at different locations in the building.

We first show the relationship between FlipLoRa perfor-
mance and SNR in real environments. By changing the trans-
mitting power of the FlipLoRa end nodes, we can receive the
signal under different SNR. Figure 10(a) shows the SER and
BER under different SNRs. The parallel degree is set to 4.
We observe that the symbol error rate of FlipLoRa remains
lower than 6% even under extremely low SNR. In addition,
by increasing the SNR of received signals, FlipLoRa can
produce better demodulation results. Considering that LoRa
applies a forward error correction (FEC) for data encoding,
the decoding process can correct some of the errors from the
symbol demodulation stage. Consequently, the bit error rate in
Figure 10(a) is much lower than the symbol error rate, which
is below 5% even when the SNR is extremely low.

Next, we explore FlipLoRa’s performance under different
PDs. Figure 10(b) shows the evaluation result of the demodu-
lation performance of FlipLoRa with different number of con-
current packets. We set SF=12 and test the performance under
low SNR environment. As concurrent packets increasing from
1 to 5, both the SER and BER of FlipLoRa grow up. But they
increase slowly and remain below 6% even when 5 packets
are overlapped together. This is because FlipLoRa extracts the
feature of quasi-orthogonality between upchirp and downchirp
to separate packets, which is stable and easy to detect even
under high concurrency. Figure 10(c) compares the throughput
of FlipLoRa and nominal LoRa. Since nominal LoRa physical
layer does not support receiving multiple packets with the
same configuration simultaneously, we see that the throughput
of nominal LoRa drops. The throughput of FlipLoRa first
grows linearly as PD increases because of the low SER/BER.
When PD reaches 5, the interference between packets becomes
stronger which results in high SER. FlipLoRa then fails to
correct these bit errors with FEC mechanism and reaches its
upper limit. The results show that FlipLoRa improves the max
throughput of LoRa by 3.84x.

We evaluate the performance of our symbol cancellation
method in real environment. Figure 10(d) shows the algorithm
performance on canceling the target signal’s power. For most
cases (over 60%), our construction based cancellation algo-
rithm can reduce the power of the target signal by 25dB.
Considering the SNR of low-cost LPWAN nodes is usually
under 20dB, our approach is sufficient for canceling inter-
ference from collisions. Besides, we also compare search-
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Fig. 10. (a) SER/BER of five real FlipLoRa nodes under different SNRs. (b) SER/BER of real FlipLoRa nodes under low SNR. (c) Throughput of FlipLoRa
and nominal LoRa. (d) CDF of reduced signal power in symbol cancellation.
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RaspberryPi 3B+
HackRF One

Fig. 11. FlipLoRa Setup: USRP N210 gateway and RaspberryPi+HackRF
node

based cancellation algorithm with our method. The experiment
results in Figure 10(d) show that our construction based
cancellation algorithm is better than traditional methods.

VI. RELATED WORK

Collisions in Wireless Networks: With the development of
diverse wireless technologies [12], [13], [14], collisions and
interferences have handicapped the performance of wireless
networks [15], [16]. Many efforts have been carried out for
solving collisions in wireless networks [17]. Some of them use
multiple antennas to achieve MIMO on wireless devices [18],
[19]. The multi-antenna systems can enable concurrent trans-
missions for both uplinks and downlinks. Although the MIMO
based solutions improve the network throughput significantly,
they cannot be used in common LPWAN devices with a
single antenna. Successive Interference Cancellation (SIC)
recovers packets from collisions by iteratively estimating and
extracting the strongest component from the received signal.
This technique is widely used in cellular networks, where
the signal strength of each end device is known and can be
scheduled by the base stations. ZigZag [20] and mZig [21]
are two representative approaches for decoding collisions in
WiFi and ZigBee networks. However, those works cannot
work well for low SNR LoRa signals without leveraging the
coding properties of LoRa.
Parallel Decoding for LoRa: Our work is inspired by some
recent works of parallel decoding and collision recovery in
LoRa. Netscatter [22] migrates LoRa encoding mechanism to
backscatter devices and enables parallel decoding for hundreds
of concurrent transmissions. The heart of Netscatter is a dis-

tributed coding mechanism that symbols from different devices
shifted by different frequencies and each device uses On-Off
Keying (OOK) to encode data. Devices in Netscatter should be
strictly synchronized. Thus, this approach cannot be applied in
current LoRa networks. Choir [9] proposes a collision recovery
method for LoRa, which exploits the hardware imperfection
of low-cost LoRa devices to decompose overlapped signals.
However, as demonstrated in [22], this approach does not
scale to more than 5 to 10 concurrent devices since the tiny
frequency offset is difficult to extract especially for low SNR
signal. More recently, mLoRa [23] and FTrack [10] exploits
the misaligned edges of LoRa symbols to separate collisions.
FlipLoRa is also based on such an idea but better leverages
the characteristic of LoRa.
LoRa Technology Enhancement: Apart from collision de-
coding, many efforts also have been made to strengthen
the LoRa technology. Charm [24] utilizes the multi-gateway
feature in LoRa for weak signal decoding. Chime [25] em-
powers LoRa network by estimating the channel quality
and selecting the best channel for transmission. Combining
LoRa with backscatter technology is also appealing. LoRa
Backscatter [26] presents the first wide-area backscatter sys-
tem. PLoRa [27] first demonstrates an ambient backscatter
system achieving kilometer communication range using LoRa.
Sensing and localization are important areas in wireless re-
search. LoRa Alliance releases a whitepaper [28] for LoRa
localization. The main idea is using TDoA based on widely
deployed gateways. But currently the accuracy is sub-100
meters level. Widesee [29] explores the possibility of LoRa
sensing. The system can detect and localize human targets,
which is especially useful in emergency scenarios.

VII. CONCLUSION

In this paper, we formally demonstrate the quasi-
orthogonality between upchirp and downchirp in LoRa and
leverage it to improve the performance of LoRa network. We
propose FlipLoRa, a new coding mechanism to disentangle
LoRa collisions, which allows concurrent transmission of
multiple packets. The key idea of FlipLoRa is to utilize the
quasi-orthogonality between upchirp and downchirp. FlipLoRa
encodes packets with interleaved upchirps and downchirps
instead of only using upchirp. We propose a decoding method
for multiple collided FlipLoRa packets. We validate FlipLoRa
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performance by both theoretical analysis and simulation. Fur-
ther, we implement the FlipLoRa on software-defined radio
and extensively evaluate its performance on real hardware.
The evaluation results show that FlipLoRa can improve the
throughput by more than 3.84x over LoRa physical layer.
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APPENDIX
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where N = 2s, s 2 N+. When N � 4, we know bN

2 +n = �bn
and then gN ⌘ 0. During the following process, we assume
N � 16. If so, we have aN�n = an, aN
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By the first few f values, we conclude that
fN = 2(log2 N+1)/2 exp

✓
j⇡

4

◆
, N � 4. (25)

Using the trick of completing the square, we have
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It is easy to get that the summation equals fN when k is even
and gN when k is odd. Finally,
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