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Abstract— LoRa, a representative Low-Power Wide Area Net-
work (LPWAN) technology, has been shown as a promising plat-
form to connect Internet of Things. Practical LoRa deployments,
however, suffer from collisions, especially in dense networks and
wide coverage areas expected by LoRa applications. Existing
collision resolving approaches do not exploit the modulation
properties of LoRa and thus cannot work well for low-SNR
LoRa signals. We propose NScale to decompose concurrent
transmissions by leveraging subtle inter-packet time offsets for
low SNR LoRa collisions. NScale (1) translates subtle time offsets,
which are vulnerable to noise, to robust frequency features,
and (2) further amplifies the time offsets by non-stationary
signal scaling, i.e., scaling the amplitude of a symbol differently
at different positions. In practical implementation, we propose
a noise resistant iterative symbol recovery method to combat
symbol distortion in low SNR, and address frequency shifts
incurred by CFO and packet time offsets in decoding. We
propose optimized designs for diminishing the time costs of
computation-intensive tasks and meeting the real-time require-
ments of LoRa collision resolving. We theoretically show that
NScale introduces < 1.7 dB SNR loss compared with the original
LoRa. We implement NScale on USRP N210 and evaluate its
performance in both indoor and outdoor networks. NScale is
implemented in software at the gateway and can work for COTS
LoRa nodes without any modification. The evaluation results
show that NScale improves the network throughput by 3.3× for
low SNR collided signals compared with other state-of-the-art
methods.

Index Terms— Internet of Things, LPWAN, LoRa, parallel
transmission, collision resolving.

I. INTRODUCTION

AS A promising technology for Low-Power Wide Area
Networks (LPWANs), LoRa draws extensive interests

from both academia and industry. Different from high-power
and high-bitrate Wi-Fi or cellular, LoRa focuses on the field
of low-power, low-cost, and long-range communications for
connecting millions of Internet of Things (IoT) devices [1].
As one of the key communication technologies for IoTs, LoRa
is widely used in various IoT applications such as environment
monitoring [2], wild animal tracking [3], disaster rescue [4],
warehouse management [5], etc.
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However, LoRa networks in practice suffer from packet
collisions, especially when connecting a large number of
devices, which is expected for most LoRa applications [6], [7].
Collisions adversely cause packet loss and throughput degra-
dation, which also drain battery life and waste precious air
time and spectrum. Moreover, for design simplicity and energy
conservation, LoRa uses the star-of-stars network topology and
adopts a simple MAC layer design (e.g., ALOHA based MAC
protocol in LoRaWAN), which further exacerbates packet
collisions in LoRa networks [8], [9].

Existing Approaches. The collision problem should be
carefully addressed before applying LoRa as the main tech-
nique for connecting millions of IoT devices. Although there
exist a large collection of collision resolving approaches, they
cannot work well for low-SNR LoRa as they do not exploit
LoRa’s modulation properties. For example, mLoRa [10]
applies time domain successive interference cancellation (SIC)
to LoRa collisions. It starts with a collision-free chunk and
iteratively reconstructs and extracts each recovered chirp for
packet decoding. According to the experiment, mLoRa mainly
works for signals with SNR > 5 dB. Choir [11] exploits the
hardware imperfections of low-cost LoRa nodes to separate
collided packets. FTrack [12] decodes multiple LoRa packets
from a collision by calculating the instantaneous frequency
continuity by short time spectrum analysis.

Fundamental limitations: Existing collision decoding
approaches [10], [12] have limitations in decoding low-SNR
LoRa signals (e.g., SNR < 0). They focus more on the time
domain signal analysis and interference cancellation. But they
do not consider the modulation features of LoRa which can
concentrate energy in the frequency domain. As a result, those
methods have a high SNR loss compared with the original
LoRa decoding and cannot work for low-SNR LoRa signals.

Our Approach. To resolve collisions in low SNR LoRa
signals, we present NScale to decode packets from collided
LoRa signals. The heart of NScale is to leverage the subtle
packet time offsets to disentangle collided packets. To resolve
collisions of low SNR, NScale (1) translates packet time off-
sets, which are vulnerable to noise, to more robust frequency
features, and (2) amplifies the time offsets by non-stationary
signal scaling, i.e., scaling a symbol differently at different
positions. NScale then leverages the frequency features after
non-stationary scaling to decompose concurrent transmissions.

To see how NScale works, consider a simplified collision
scenario in Fig. 1, where two packets - each with three
chirp symbols - collide. The PHY layer of LoRa uses the
Chirp Spread Spectrum (CSS) to modulate data bits into
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Fig. 1. NScale decoding example: for each collided symbol, NScale
transforms and amplifies the time domain features to frequency features
through non-stationary signal scaling. Chirp segments at different positions
of the window are amplified with different peak scaling factors.

chirp symbols of linearly increasing frequencies. In demod-
ulation, each received chirp symbol is multiplied with a base
down-chirp of linearly decreasing frequency. When there is no
collision, this dechirp operation results in a single frequency
tone (a single peak after FFT) which represents the modulated
data. When there are collisions, the dechirp results in multiple
frequency tones in a demodulation window, making it difficult
to distinguish symbols from different packets. To resolve the
LoRa packet collisions, as shown in Fig. 1, we leverage
the down-chirp with non-stationary amplitude to translate the
time misalignment of packets into frequency features, which
can be leveraged to correspond peaks to different transmit-
ters. NScale first applies the standard demodulation with the
base down-chirp to each window. The three chirp segments,
as shown in Fig. 1, result in three FFT peaks (h1, h2 and
h3) with height proportional to the segment length and the
signal amplitude. Those three peaks also show why traditional
LoRa cannot decode the collision. Further, NScale dechirps
signals in each window with a non-stationary scaled down-
chirp, i.e., a down-chirp with varying amplification along time.
This results in FFT peaks amplified with different factors
(α1h1, α2h2 and α3h3), depending on which part of the
non-stationary scaled down-chirp is multiplied with the corre-
sponding chirp segment. Combining these two demodulation
results, we can obtain the scaling factors αi. By carefully
designing the non-stationary scaled down-chirp, we can make
αi distinguishable for different chirp segments and derive
the segment length and position related to the non-stationary
scaled down-chirp. Based on this, we can group chirp segments
for each packet with the same misalignment and then decode
each packet.

Challenges. Turning the idea into reality, however, entails
non-trivial challenges. First, NScale relies on accurate mea-
surement of peaks for frequency tones after dechirping, which
is difficult due to the low SNR of LoRa transmissions and the
phase rotation property of the Fourier transform. We propose a
noise resistant iterative peak recovery algorithm to combat the
peak distortion, and achieve an accurate estimation of both

the frequency and height for each peak. Second, it is non-
trivial to design the non-stationary scaled down-chirp, which
affects the performance of NScale. We make an in-depth
analysis of the relationship between non-stationary scaled
down-chirps and the decoding performance, and propose the
designing strategy for non-stationary scaled down-chirps to
optimize NScale’s decoding performance in practice. Third,
after grouping chirp segments to packets for decoding, we have
to resolve the mixed impact of carrier frequency offsets (CFO)
and symbol-to-window time offsets. We design a technique
to calculate CFO and symbol-to-window time offset based on
the combination of up-chirps and down-chirps in the preamble
and SFD of LoRa packets. The last challenge arises from the
practical requirements of decoding LoRa collisions in real-
time. The computation overhead of NScale mainly stems from
the in-window distribution detection and the packet identi-
fication. For detecting the segment distribution, the receiver
estimates FFT peaks from both the standard demodulation and
the non-stationary scaled demodulation, which is computation-
intensive. To simplify the distribution detection, we propose an
optimized peak scaling factor extraction method based on the
fact that FFT peaks with and without non-stationary scaling
locate at the same frequency. Besides, we optimize the packet
identification by using the frequency-time relationship of
chirps in LoRa preambles. We design the moving correlation
windows to correlate received chirps with adjacent preamble
symbols, and thus avoid the computation-intensive sample-step
correlation with the standard preamble.

Main Results and Contributions.
• We propose NScale, a protocol leveraging non-stationary

scaling to decompose concurrent transmissions for low
SNR LoRa collisions, trying to bridge the gap between
LoRa vision on providing low-power long-distance con-
nection and its practical limitations. To address practical
challenges in NScale design, we propose a noise-resistant
iterative peak recovery algorithm to resolve peak distor-
tion in low SNR LoRa signal, and remove the impact of
the CFO and time offset to accurately decode packets. We
optimize the time costs of computation-intensive tasks for
meeting the real-time requirements of LoRa decoding.

• We theoretically analyze NScale performance and show
that NScale incurs SNR loss <1.7 dB to original LoRa.

• We implement NScale on the SDR platform USRP N210.
NScale is completely implemented in software at the
LoRa gateway without any modification to LoRa end
nodes. Thus, it can be easily applied to COTS LoRa nodes
and existing LoRa networks.

• We thoroughly evaluate NScale’s performance in both
indoor and outdoor LoRa networks. The experiment
results show that NScale can improve the network
throughput in collisions by 3.3× for low SNR LoRa
signals compared with other state-of-the-art methods.

II. BACKGROUND AND MOTIVATION

A. LoRa Background

LoRa physical layer adopts the Chirp Spreading Spec-
trum (CSS) technique for modulation [13]. CSS modulates
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Fig. 2. Spectrogram and demodulation result (a)(d) a base chirp symbol,
(b)(e) a shifted chirp symbol, and (c)(f) two LoRa chirp collision.

data into chirp symbols whose frequency change linearly
over time. As shown in Fig. 2(a), given a predefined band-
width BW , the frequency of the base up-chirp C(t) linearly
increases from −BW

2 to BW
2 . Thus, the frequency of the base

up-chirp can be represented as kt − BW
2 , where k denotes

the frequency increasing rate of the chirp. The phase of the
up-chirp φ(t) will be

φ(t) = 2π

∫ t

0

(kτ − BW/2)dτ (1)

and thus base up-chirp C(t) can be represented as

C(t) = ejφ(t) = ej2π(− BW
2 t+ k

2 t2) (2)

LoRa encodes data bits into symbols by shifting the initial
frequency of the base up-chirp. A LoRa symbol with ini-
tial frequency fsym is denoted as C(t)ej2πfsymt. Given the
bandwidth BW , frequency for a symbol higher than BW

2
aligns down to −BW

2 as shown in Fig. 2(b). LoRa defines
N different shifted initial frequencies, which results in N
uniformly shaped up-chirps to encode SF = log2N bits [14].

A typical LoRa receiver decodes a LoRa chirp by first
multiplying it with a standard down-chirp, i.e., C−1(t) whose
frequency decreases linearly over time. The multiplication
leads to a single tone signal with the frequency of fsym. Then
the receiver applies the Fast Fourier Transform (FFT) on the
dechirped signal, translating the signal into an energy peak in
the frequency domain, as shown in Fig. 2(d) and (e). We finally
extract the encoded data from the chirp symbol by identifying
the index of the FFT peak in the frequency domain.

When multiple LoRa nodes transmit simultaneously, their
signals collide at the receiver. Multiple overlapped chirps
are transformed to multiple FFT peaks in the frequency
domain through the LoRa decoding processes, as shown in
Fig. 2(c) and (f). The LoRa demodulator cannot map FFT
peaks to the correct transmitters, and thus it fails to decode
the collided signals. The goal of this work is to decode
LoRa collisions by corresponding multiple FFT peaks in each
demodulation window to the correct transmitters.

B. Limitations & Challenges

The main advantage of LoRa design is that it can con-
centrate time domain energy into a single tone frequency

peak by dechirping and FFT [15]. The modulated chirps are
inherently robust against channel noise. Thus, LoRa signals
can be detected and decoded even under extremely low
SNR (e.g. SNR as low as −20 dB) [16], enabling low
power and long range communications [17], [18]. Existing
collision decoding approaches do not thoroughly exploit the
LoRa encoding properties and cannot work well under low
SNR LoRa signals. For example, SIC usually focuses on
time-domain signal decoding and cancellation and does not
leverage the LoRa properties. As a result, existing collision
decoding approaches [10], [12] cannot work for low SNR
LoRa signals. We argue this significantly removes the major
advantages of LoRa, which is supposed to provide long range
and low power communications with very low SNR of even
−20 dB.

C. Motivation

We leverage the fact that collided LoRa packets are likely to
be misaligned in time. As shown in Fig. 1, the collided signal
is divided into consecutive demodulation windows of L, where
L is the symbol length. When a packet is not aligned with the
window, there will be two LoRa segments in each window.
Assuming the length of the first symbol and the second symbol
are γ1L and γ2L, respectively, we have γ1L + γ2L = L.
We have two observations: (1) Given a specific LoRa packet,
the in-window segment distribution, i.e., γ1 and γ2, are the
same across all consecutive windows. (2) For two unaligned
LoRa packets, their in-window segment distributions should be
different. The in-window segment distribution can be applied
to disentangle different packets in a collision.

III. NSCALE DESIGN

A. Design Overview

Design Goals. NScale has the following design goals:
• NScale should work for low SNR LoRa collisions and

incurs very small SNR loss to LoRa decoding.
• NScale should incur no modification to LoRa node and

thus can be applied to COTS nodes and existing LoRa
network deployments.

• NScale should incur small computation overhead com-
pared with typical LoRa decoding and thus can be
processed in real time.

Fig. 3 illustrates the main flow of NScale design:
Packet identification. For a received signal sequence,

NScale first detects the existence of LoRa packets and
identifies whether there is a collision. NScale leverages a
cross-correlation based packet identification approach, which
can detect LoRa packets even when multiple LoRa preambles
collide together. When there is no collision, the signal is
sent directly to a standard LoRa decoder. Otherwise, NScale
utilizes the preambles to identify the beginning of each col-
lided packet. Then the collided signal is divided into multiple
consecutive demodulation windows for demodulating.

In-window distribution detection. For signal in each
demodulation window, NScale transforms the in-window dis-
tribution of each low-SNR symbol into robust FFT peak
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Fig. 3. Main workflow of NScale design.

features by non-stationary scaling. When two collided packets
are not aligned, the in-window distributions of chirp segments
for those two packets are different. Consequently, we can
infer which packet the corresponding chirp segments belong
to according to the segment distributions.

Symbol recovery. Based on the estimated in-window dis-
tribution information, NScale classifies symbols into multiple
clusters, each corresponding to a collided LoRa packet. Before
decoding, we estimate the CFO and the packet-window time
offsets for each LoRa packet. Finally, NScale combines each
pair of chirp segments into packet chirps, and the output chirps
are fed to the standard LoRa decoder for packet decoding.

B. Packet Identification

Upon receiving a signal sequence, NScale first detects the
existence of LoRa packets. NScale detects LoRa packets by
identifying the preamble of each packet, where each preamble
consists of Nc consecutive base up-chirps.

1) Preamble Detection: For detecting the incoming LoRa
packet, NScale extracts each individual preamble chirp
from the received signal by using a base up-chirp to correlate
with the incoming signal. There will be a correlation peak
when the base up-chirp is strictly aligned with a received
preamble chirp. The intervals between each two adjacent
correlation peaks of the same packet are identical, equal to
the number of samples within a chirp, i.e., N . Denote C[i] as
the ith correlation output, our packet identification works as

find s, s.t. |C[s + kN ]| > δ, ∀k ∈ [0, Nc − 1] (3)

where s is the start of packet preamble and δ represents the
minimum correlation requirements, which can be determined
by channel estimation. When multiple LoRa preambles collide
together, after the cross-correlation, we can get multiple groups
of equally spaced peaks, each corresponding to a LoRa packet,
as shown in Fig. 4. We use Eq. 3 for grouping correlation peaks
of the same preamble, and identifying the existence of collided
packets based on the grouping result. We also get the start of
each collided LoRa packet from the preamble identification.

The computational overhead of such a packet identification
algorithm mainly stems from the sample-step moving corre-
lation detection, whose time complexity is O(NM ) where N
denotes the number of samples in a chirp and M is the samples
of the received signal.

2) Optimizing for Realtime Processing: In the packet iden-
tification, the sample-step moving correlation for detecting
each individual preamble chirp dominate the computational
overhead. In order to support real-time parallel decoding of
LoRa transmissions, we propose an optimized method to avoid

Fig. 4. Detecting LoRa packets by correlation with a single base up-chirp.

the costly sample-step correlation detection by leveraging the
repeat pattern of LoRa preambles.

Our optimized packet identification approach leverages the
fact that preamble chirps in the received signal have a high
correlation with each other despite the existence of the CFO.
Therefore, we can employ the self-correlation of the received
signals to identify the existence of LoRa packets. When there
is a LoRa preamble, the self-correlations of every two adjacent
signal segments produce a significant correlation. Otherwise,
the adjacent signal segments are completely uncorrelated,
indicating the signal samples are noises or random payloads.
Specifically, our optimized packet identification is mainly
composed of three steps: (1) Upon the arriving of the signal
samples, we first divide them into consecutive processing win-
dows, each having the same length as a chirp, i.e., containing
N samples. (2) Then, for samples in every two consecutive
processing windows, we calculate their correlation through

SCn =
N∑

k=1

sn[k]s∗n+1[k]

where sn[k] denotes the kth sample of the nth processing
window, and s∗n+1[k] is the complex conjugate of the kth
sample in the n+1th processing window. As the instantaneous
frequency of a preamble chirp increases linearly with time, the
time offset between the processing window and the received
LoRa packet introduces the same frequency shift for all pream-
ble chirps. Thus, even the preamble chirps are not aligned with
the processing windows, preamble segments in each reception
window are still of high correlation. (3) Finally, we detect the
existence of a LoRa preamble by searching Nc−1 consecutive
processing windows with significant correlations higher than
a threshold, i.e., SCn > δ, ∀n ∈ [K, K + Nc − 2]. The
cross-correlation between two unaligned preamble chirps of
different LoRa packets is very low. Therefore, the correla-
tion based approach can avoid inter-packet interference even
when multiple LoRa preambles collide. After determining
the existence of LoRa preambles, the receiver switches to
individual-chirp correlation mode for getting the start of each
collided packet. This optimized packet identification avoids
computation-intensive sample-step moving correlation opera-
tion on preamble detection, and optimizes the time complexity
from O(NM ) to O(M ).
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Fig. 5. Detecting in-window distributions for collided LoRa chirps with non-stationary signal scaling.

C. In-Window Distribution Detection

NScale separates LoRa collisions according to the
in-window distribution of each chirp symbol. A practical
challenge is precisely extracting the time domain segment
distribution under low SNR. We address this from the follow-
ing aspects: (1) translating the time-domain feature to robust
FFT peak features in the frequency domain; (2) concentrating
the energy in the time domain to frequency features by
dechirping, which preserves the merits of LoRa decoding;
(3) using the non-stationary signal scaling to further amplify
the features. Fig. 5 summarizes the key steps of in-window
distribution detection for collided LoRa chirps. (1) For signal
in each window, we multiply it with a base down-chirp, and
perform the Fourier transform on the multiplication result.
This translates time-domain chirp segments to energy peaks
in the frequency domain. (2) We further multiply the received
signal with a non-stationary scaled down-chirp with varying
amplitude over time. We transform the result of multiplication
to energy peaks in the frequency domain, extracting each
peak’s frequency and height. (3) We pair the energy peaks
from the above two steps according to peak frequencies, and
calculate peak scaling factors as the height ratios of each pair
of peaks. Given the scaling function of the non-stationary
scaled down-chirp, we can derive the in-window distribution
of each chirp segment from the peak scaling factors.

1) Modeling for Method Design: Suppose n LoRa packets
collide at the receiver. We divide the collision signals into
consecutive demodulation windows, each having the same
length as a chirp. For separating collisions in each demod-
ulation window, we have to extract the in-window distribution
information for each chirp segment by first clustering chirp
segments into two categories: the left segments adjacent to
the start of the window (Fig. 6(a)) and the right segments
adjacent to the end of the window (Fig. 6(d)). Fig. 6(a) shows
an example of the left segment with a symbol-window time
offset of Δt, i.e.,

CL(t) = Hej2πftC(t + Δt) 0 ≤ t < T − Δt (4)

where C(t) is the base up-chirp, f and H denotes the initial
frequency and amplitude of the received chirp. As the time
offsets of chirps can be translated to frequency shifts, we have
C(t+Δt) = ej2π(kΔt)tC(t), where k is the increasing rate of

the chirp frequency. Similarly, the right segment in Fig. 6(d)
can be written as

CR(t) = Hej2πftC(t − Δt) Δt ≤ t < T

where Δt is the time offset between the chirp segment and
the demodulation window. In the rest of this section, we will
illustrate how to extract the in-window distribution of chirp
segments for both CL(t) and CR(t).

2) Extracting In-Window Distributions: We illustrate our
in-window distribution detection approach by taking CL(t) as
an example. To initiate, we multiply the received signal by
a base down-chirp (i.e., C−1(t)) with stationary amplitude
throughout the whole symbol duration. This multiplication
dechirps the chirp segment into a single tone, where CL(t)
is dechirped with the frequency of f + kΔt and time range
of [0, T − Δt). After the multiplication, we perform FFT to
aggregate the energy of the chirp segment to an energy peak
in the frequency domain, as shown in Fig. 6(b). We per-
form zero-padding to the original signal before the Fourier
transform to improve the frequency granularity. After LoRa
demodulation, the energy of CL(t) is concentrated, leading to
an energy peak in the frequency domain. Suppose the energy
peak of CL(t) appears at the mth FFT bin, the height of that
peak can be calculated as:

h1 = |X1[m]| =
∣∣∣ N0−1∑

n=0

C−1[n] × CL[n]e−j2π nm
N

∣∣∣
where X1[m] is the FFT result at the mth FFT bin, CL[n]
is the nth discrete sample of the chirp segment, N0 and N
represent the number of samples for the chirp segment and the
whole demodulation window, respectively. Substituting CL[n]
with Eq. 4, we have the peak height as h1 = H × N0.

Beside the base down-chirp, we design a non-stationary
scaled down-chirp A(t)C−1(t), whose amplitude changes over
time with a known scaling function A(t). We multiply the
received signal with the non-stationary scaled down-chirp.
After the Fourier transformation on the multiplication result,
CL(t) is also translated to an energy peak at the mth FFT bin
(as shown in Fig. 6(c)) with the height:

h2 = |X2[m]| =
∣∣∣ N0−1∑

n=0

A[n]C−1[n] × CL[n]e−j2π nm
N

∣∣∣
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Fig. 6. In-window distribution detection: (a)(d) Symbol segments with
different in-window distributions, (b)(e) demodulation with the base down-
chirp, (c)(f) demodulation with the non-stationary scaled down-chirp.

where X2 is the FFT result with the non-stationary scaled
down-chirp, A[n] is the discrete sample of scaling function.
Substituting CL[n] with Eq. 4, the height of the energy peak
is simplified as h2 = H

∑N0−1
n=0 A[n].

Note that the non-stationary scaling on the down-chirp
does not affect the frequency of the FFT peaks. The energy
peaks of both h1 and h2 locate at the same frequency, i.e.,
f+kΔt. The above procedures also translate the right segment
in Fig. 6(d) into two FFT peaks with the same frequency,
as shown in Fig. 6(e) and (f). In the presence of collisions,
multiple overlapped chirp segments can be translated into
FFT peaks simultaneously through a single dechirping. For
each chirp segment, we pair the energy peaks from the two
multiplications according to the peak frequencies. For peaks of
the same chirp segment, we calculate the peak scaling factor
P as the ratio of peak heights

P =
h2

h1
=

∑N0−1
n=0 A[n]

N0
(5)

As the scaling function A[n] is already known, we can infer the
in-window distribution for each chirp segment directly from
the peak scaling factor P . We finally derive the in-window
distributions for every chirp by corresponding the peak scaling
factors to the known amplitude scaling function.

The computational overhead for in-window distribution
detection mainly stems from the peak feature estimation,
where peaks are iteratively extracted and canceled in each
demodulation window as illustrated in Sec. III-D. For each
chirp segment, the peak estimation is performed twice with
the base down-chirp and the scaled down-chirp respectively,
which incurs prominent computing overheads.

3) Optimizing In-Window Distribution Detection: To support
real-time processing, we propose an optimized in-window
distribution detection approach, avoiding the repetition of the
costly peak feature estimation. Our optimized method lever-
ages the fact that FFT peaks with and without non-stationary
scaling locate at the same frequency. Therefore, we can
combine these two FFT results to derive peak scaling factors
directly without estimating peak features from the two FFTs.
Specifically, this is done by multiplying the energy of the two
FFT outputs on every frequency, and taking a square-root.
As a result, the non-empty frequencies that correspond to FFT

Fig. 7. Optimized peak scaling factor detection: (a) Multiplication and
(b) division of the two FFT results in Step 1 and Step 3.

peaks are amplified. In contrast, the frequencies corresponding
to noises will be attenuated as shown in Fig. 7(a). We also
calculate the scaling factors on every frequency by dividing
the energy of the two FFTs as shown in Fig. 7(b). Finally,
we derive the in-window distribution for each chirp by search-
ing energy peaks from the multiplication and obtaining scaling
factors of the same frequency from the division. Compared
with the non-optimized method, we estimate the peak feature
from the multiplication only once, and thus we can save
the computation-intensive repetition in the peak estimation to
reduce the processing time.

At this point, we can calculate the in-window distribution
of chirp segments. Then, two consecutive chirp segments for
the same chirp are paired and merged by searching peaks with
the same frequency in consecutive windows. Finally, we can
obtain all chirp symbols extracted from the collision, each with
the estimated in-window distribution information.

D. Peak Estimation in Practice

The in-window distribution calculation relies on accurately
estimating FFT peaks from the LoRa collisions, including both
the frequency and the height of peaks. However, accurate peak
estimation is challenging due to the peak distortion caused
by phase rotation property of the Fourier transform. In this
subsection, we discuss the reason of peak distortion and further
show how to improve the estimation accuracy.

In practice, the phase rotation of the Fourier transform
distorts frequency peaks. A shift in the time domain can be
translated into a phase rotation in the frequency domain [19]:

F{r(t)} = R(f)
F{r(t + τ)} = R(f) · ej2πfτ (6)

where r(t) is the signal in the time domain, and R(f)
is the corresponding frequency-domain representation. LoRa
conveys data by cyclically shifting the frequency of base
up-chirps. After dechirping, a LoRa symbol generates two
frequencies, i.e., f and f − BW , respectively. When the
sampling rate is equal to the chirp bandwidth BW , the Fourier
transform of the two frequencies will result in two peaks,
denoted as R1(f) and R2(f), at the same location. If the LoRa
chirp accurately aligns with the demodulation window, R1(f)
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Fig. 8. Peak distortion example: (a) Ideal peak when a chirp is aligned
with the demodulation window. (b)(c) Distorted peaks when a chirp and
demodulation window are misaligned by a time offset τ .

and R2(f) add up constructively, resulting in an ideal peak
as shown in Fig. 8(a). However, when the LoRa symbol and
the demodulation window are misaligned (suppose the time
offset is τ ), the Fourier transform of the two frequencies will
rotate by different phases. Recall the phase rotation property
in Eq. 6, with the same time offset τ , peaks of different
frequencies have different phase shifts, i.e., R1(f) · ej2πfτ

and R2(f) · ej2π(f−BW )τ . Those two peaks with different
phase shifts add up destructively, resulting in peak distortions.
As shown in Fig. 8(b) and (c), with a different time offset
τ , peaks in the frequency domain are distorted differently,
impacting the estimation of the frequency and height of peaks.

NScale recovers FFT peaks from distortion by compensating
the phase rotation of the two frequencies, i.e., f and f −BW ,
which relies on the fact that the sampling rate of off-the-
shelf ADCs is much higher than the chirp bandwidth BW .
When sampling the received signal at a high rate (e.g., higher
than 2BW according to the Nyquist-Shannon theorem [20]),
the Fourier transform of the received signal will result in
two separate peaks, R(f) and R(f − BW ), respectively.
To compensate the phase rotation, NScale searches the phase
difference between R(f) and R(f − BW ) via:

φ = arg max
0<φ≤2π

R(f) · ejφ + R(f − BW ) (7)

The maximum can be obtained only when the phase rota-
tion effect is compensated. Then we can estimate the peak
accurately. It is worth noting that we can apply stochastic
gradient-descent algorithms on Eq. 7 with randomly chosen
initial points that are likely to converge to the global maximum
to speed up the searching process.

E. Symbol Recovery

To decode the collisions, we further need to group symbols
into different packets and then recover the precise information
of each symbol.

NScale utilizes a constrained k-means based approach to
group the symbols into k clusters (i.e., the k collided packets).
We determine the number of clusters, i.e., k, based on the
packet identification result. NScale uses a cross-correlation
based approach to detect LoRa preambles from the received
signal, which gives the packet number k as well as the
start of each collided packet. This information is used for
initializing the k-means based symbol grouping approach.
Then, we use the in-window distribution, which is identical
for symbols of the same packet but distinct for symbols
of different packets, as the characteristic value for symbol
clustering. We apply several constraints to the clustering

Fig. 9. Detecting accurate packet start by eliminating the impact of CFO.

method from the following aspects. (1) Symbols are grouped
to the clusters in time order. (2) A new cluster can only
emerge and start gathering symbols after detecting the start of
a packet. (3) Each cluster has one and only one symbol in each
demodulation window. Based on the constraints, we obtain k
groups of symbols, each of which corresponds to a collided
packet. Finally, we send the recovered symbols to a standard
LoRa decoder for decoding.

Before packet decoding, we need to (1) eliminate the impact
of CFO to recover the accurate frequency of each chirp, and
(2) find the accurate start of each packet to compensate for
the time offset of each chirp. A practical challenge is that the
CFO and the packet time offset are cross dependent, impacting
the estimation of each other. We leverage the unique structure
of LoRa packets in accurately calculating CFO and packet
time offsets. A LoRa packet consists of both base up-chirps
(i.e., preambles) and base down-chirps (i.e., SFDs). One key
finding is that for the same amount of CFO, the correlation
peaks of up-chirps and down-chirps shift oppositely. As shown
in Fig. 9, assuming a LoRa packet is received with a positive
CFO, we correlate the received signal with a base up-chirp
followed by a base down-chirp, respectively. The correlation
peak of the up-chirp is shifted by −N ·CFO/BW , while the
peak of the down-chirp is shifted by N · CFO/BW . Denote
Δ = N · CFO/BW . For the base up-chirp, the correlation
peak appears at I1 = i − Δ, where i is the actual start of the
packet. While for the base down-chirp, the correlation peak
appears at I2 = (i + kN) + Δ. We calculate the shift of
correlation peaks as

Δ = MOD(I2 − I1, N)/2 (8)

Then we can calculate CFO as

CFO = Δ × BW/N (9)

Therefore, we can eliminate the impact of CFO and time offset
for accurate frequency estimating in packet decoding.

IV. DESIGNING NON-STATIONARY SCALING

NScale calculates the in-window distributions of collided
symbols using non-stationary signal scaling. Therefore, the
design of the scaling function impacts the decoding per-
formance. We show the effect of the non-stationary scaling
function on the decoding performance of NScale, and present
strategies on designing an effective scaling function.
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Fig. 10. Non-stationary scaling function design: (a) A non-monotonous
function corresponds two different chirps to the same peak scaling factor,
(b) A linear function maximize the mean inter-object distances.

1) Universal Rules for Scaling Function Design: Given
an arbitrary LoRa packet collision, there are two rules for
non-stationary scaling function design. The first is being
monotonous. Through non-stationary amplitude scaling, the
in-window distributions of chirps are translated to peak scaling
factors in the frequency domain (i.e., Pi in Eq.5). As shown
in Fig. 10(b), for a monotonous scaling function, the chirp
segments with different in-window distributions can generate
different peak heights, leading to unique peak scaling factors.
Otherwise, for a non-monotonous scaling function, symbols
with different in-window time distributions may result in the
same peak scaling factor, leading to ambiguity. We show an
example in Fig. 10(a) with a down-chirp of non-monotonous
scaling function. The bottom of this figure is the relationship
between peak scaling factors and in-window distributions. As
shown in Fig. 10(a), the points A and B in this figure represent
two chirp segments of different in-window distributions. Due
to the non-monotonicity of the scaling function, these two
segments with distinct distributions generate the same peak
scaling factor, making it difficult to distinguish them.

The scaling function should also be linear. As illustrated
in Sec. III-E, NScale groups collided symbols into different
packets according to the in-window distribution, which is
reflected by the peak scaling factor in Eq. 5. For accurate
distribution calculation, the peak scaling factors for symbols
of different in-window distributions should be different. Thus,
the goal of our non-stationary scaling design is to maximize
the difference in peak scaling factors of different in-window
distributions. For two different in-window distributions i and
j, we define the distance between their peak scaling factors as

d(i, j) =
|Pi − Pj |

max{P} − min{P}
where Pi and Pj are the scaling factors for i and j, as shown
in Fig. 10(b); and P is a set of all possible peak scaling factors.
For a demodulation window with N sample points, there are
2N − 1 possible in-window distributions corresponding to
2N − 1 different peak scaling factors, i.e., |P| = 2N − 1.
All scaling factors are normalized to the range of (0, 1] by
dividing max{P} − min{P}.

Fig. 11. Performance comparison of linear scaling functions with different
slopes: (a) Averaged SER. (b) SNR Loss.

Given a specific scaling function, the set of all possible peak
scaling factors, i.e., P, can be derived according to Eq. 4. Each
object in P corresponds to a different in-window distribution.
For object i ∈ P, let

a(i) =
1

|P| − 1

∑
j∈P,j �=i

|d(i, j)|2

be the mean distance between i and all other objects. We can
interpret a(i) as a measure of how well i is separated from
other in-window distributions (the bigger the value, the better
the separation). Thus, the problem of designing non-stationary
scaling is to finding a collection of P to maximize the mean
inter-object distances, i.e.,

Popt = arg max
P

1
|P|

∑
i∈P

a(i) (10)

Given a monotonous scaling function and the number of j
greater than i, as shown in Fig. 10(b), we have d(i, j) =∑j−1

k=i d(k, k + 1). The mean inter-object distances achieves
maximum only when the distances between each pair of neigh-
boring objects are identical, i.e., d(k, k + 1) = 1

|P| , ∀k ∈ P,
indicating that the scaling function should be linear.

We further evaluate the NScale’s decoding performance
under different linear scaling functions. We use the slope of a
linear scaling function to represent the change of its amplitude
(starting at 1) over the whole chirp duration. We use linear
scaling functions with different slopes to decode the same set
of two-packet collision. As shown in Fig. 11(a), for collisions
with small inter-packet offsets (< 10% symbol duration), the
SER decreases as the slope increases. This is because scaling
functions of large slope magnify the small time offsets. While
for collisions with large time offsets (> 35% symbol duration),
the slopes have less impact on the SERs, as the packets can
already be distinguished. We also examine the SNR loss for
scaling functions of different slopes. We vary the SNR of
the received LoRa signal by manually adding white Gaussian
noise, and evaluate the minimum decoding SNR requirement
for both original LoRa and NScale with different linear scaling
slope. The results of the experiment are shown in Fig. 11(b).
We can see from the results that NScale introduces less than
1.7 dB SNR loss compared with the original LoRa.

2) Optimizing Scaling Function for Specific Circumstances:
Linear function maximizes the average inter-object distances
between any two potential in-window distributions, and can
achieve an adequate performance for decoding LoRa collisions
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Fig. 12. Optimized scaling function design for collision circumstances with
known packet arrival times.

with arbitrary signal arriving times. While, for some specific
collision circumstances, a specially designed scaling func-
tion may achieve more prominent performance. For example,
to resolve a particular LoRa collision, we can use a dedicated
scaling function, designed according to the packet arrival
time, to amplify time distribution difference of overlapping
chirps. The linear function maximizes the average difference
between any two potential in-window distributions. While the
dedicated scaling function maximizes the difference between
two particular distributions. Thus, the latter can achieve a
better decoding performance for a specific collision.

We use a two-packet collision example to illustrate our
design for the optimized scaling function. As shown in Fig. 12,
two packets collide at the receiver. The receiver first estimates
the arrival time of each LoRa packet [21]. Denote the time
offsets between the demodulation window and the collision
chirps are T1 and T2, respectively. We design the two scaling
functions according to the edges of collision symbols. Assum-
ing T1 ≥ T2, the first scaling function can be written as

A1(t) =

{
1 0 ≤ t < T1

0 T1 ≤ t < T

and the second scaling function is

A2(t) =

{
0 0 ≤ t < T2

1 T2 ≤ t < T

When multiplying the collision signal s(t) with a base
down-chirp scaled by A1(t), right segments in s(t) with
in-window distribution over [T1, T ) are suppressed. The FFT
on the multiplication results on three energy peaks correspond-
ing to two left segments and a partial of a right segment. Then,
we multiply the collision signal with a base down-chirp of
A2(t) and perform FFT, which retrains left segments distrib-
uted within T2 and results on three FFT peaks corresponding to
two right segments and a partial of a left segment. Comparing
the demodulation results of A1(t) with that of A2(t), the peak
height of h1 decreases, h3 increases, h2 disappears, and h4 is
new emerging. Thus, the scaling factors for these four peaks
are < 1, 0, > 1, +∞, respectively. Therefore, by exploiting
the frequency response of the two optimized scaling functions,
we can identify the in-window distributions of every chirp
segment with the maximum resolution. Besides, as the opti-
mized scaling functions suppress some interfering segments

Fig. 13. LoRa Gateway and Testbed Setup: Depicts NScale’s USRP N210
based gateway and commodity client based LoRa testbed.

before the FFT, it eliminates the inter symbol interference and
facilitates peak measurements in the frequency domain.

3) Summary: Linear scaling function is a good design for
universal LoRa collisions with random packet arrival times.
The slope of the linear scaling function can be determined
according to the inter-packet offset and SNR of the received
collisions. For LoRa collisions with known packet arrival
times, we can use dedicated designed scaling functions for
further optimizing the collision decoding performance.

V. EVALUATION

We implement NScale on the software defined
radios (SDRs) and evaluate its performance with commercial
LoRa devices. The prototype of NScale is shown in Fig. 13,
which is composed of a USRP N210 along with a UBX
daughter board, operating at the 470MHz bands. Decoding
algorithms of NScale are hardware-independent, so it can
be implemented on any other commercial LoRa gateways
as long as the physical samples can be obtained. Note that
LoRa gateways are usually deployed with tethered power
supplies, and thus we do not consider energy consumption
at the gateway. We use the UHD+GNU-Radio library [22]
for developing our own LoRa demodulator, and implement
NScale in MATLAB to process the PHY samples offline.
By default, our experiment uses the spreading factor SF = 10,
coding rate CR = 4/5 and bandwidth BW = 125 kHz. The
sampling rate of NScale in our experiment is set to 1 MS/s.

A. Evaluation Methodology

1) Experiment Environments: We evaluated NScale’s per-
formance in both indoor and outdoor environments.

• As shown in Fig. 13, the indoor testbed (LoRaNet)
consists of 40 LoRa end nodes, each of which uses
an SX1278 radio chip [23] and works at the frequency
of 470 MHz. Each node is connected to a Raspberry
Pi and placed at a fixed position on a shelf. All the
Raspberry Pis are connected to a backbone network and
thus all the LoRa nodes can be efficiently and accurately
controlled to facilitate precise collision generation and
measurement.

• The outdoor LoRa testbed is composed of enclosed nodes
shown in Fig. 19, each of which can sense the temperature
and humidity of the environment and transmits the sensed
data to the gateway via an SX1268 LoRa radio chip.
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Fig. 14. In-depth study of SNR and SF on NScale’s performance: (a) Overall performance of averaged SER. (b-d) CDF of the SER with different SNRs
and SFs.

Fig. 15. Performance comparison of four methods under different SNRs:
(a) Averaged Symbol Error Rate (SER). (b) Network throughput.

The nodes of the outdoor testbed can harvest energy from
solar power, making them easy to deploy on different
locations such as roads, roofs, and parking lots.

2) Compared Methods: We compare NScale with three
recent works for LoRa collision decoding.

• Choir [11]: A collision decoding method for LoRa using
hardware imperfection.

• FTrack [12]: A collision decoding method for LoRa based
on time domain signal analysis.

• mLoRa [10]: A collision decoding method for LoRa
based on SIC.

B. Comparing With Existing Works

We first compare NScale’s performance with three existing
works. Three LoRa nodes are used for generating LoRa colli-
sions. We configure one node to send beacons every 3 seconds.
Upon receiving a beacon, the other two nodes each replies
with a LoRa packet, to generate collisions. We configure an
additional processing delay (smaller than a packet duration)
for each transmitter to generate different misalignment. Thus,
packets from transmitters collide at different parts with dif-
ferent time offsets (e.g., preambles, sync words, SFDs and
payloads). We vary the transmitting power of the transmitters
to generate collisions with different SNRs. For fine-grained
SNR control, we add white Gaussian noise with controlled
amplitudes to the collected I and Q traces.

We compare the performance of NScale with the other
three LoRa demodulation schemes, in terms of SNR. Fig. 15
shows the results of the experiment. When packets collide
with a relatively high SNR (> 20 dB), both NScale and
FTrack experience a low symbol error rate (SER < 0.01) as

well as a high network throughput. Choir and mLoRa fail
to decode some of the concurrent transmissions even under
such high SNR conditions. Choir uses the fraction of the FFT
bin to distinguish collided symbols, which has errors due to
the frequency offsets of low-cost LoRa nodes drift over time.
Thus, collided symbols may be classified incorrectly, resulting
in decoding errors. mLoRa uses an SIC based approach for
decoding packet collisions, which suffers from error propa-
gation. This leads to symbol recovering errors for mLoRa,
especially when the packet length is long or the concurrency
increases. As the SNR decreases, the SER of mLoRa and
FTrack increase rapidly, because both of these two methods
have fundamental limitations in decoding low SNR LoRa
signals. For collisions under extremely low SNR (< −5 dB),
both mLoRa and FTrack even turn to be invalid, resulting in a
network throughput close to zero. The performance of Choir
also decreases for low SNR situations, as the tiny hardware
offsets are vulnerable to noise interference. NScale performs
much better than the other three methods. When packets
collide under extremely low SNR (−10 dB), the network
throughput of NScale (49 symbols per second, sps) is about
3.3× of Choir (15 sps).

C. Basic Performance

In this subsection, we examine NScale’s basic performance
for separating LoRa collisions regarding spreading factors
(SFs), SNRs, and inter-packet offsets.

First, we evaluate the impact of SNR on the performance of
NScale. The decoding performance is evaluate under four SNR
regimes: high (>20 dB), medium (5∼20 dB), low (−5∼5 dB)
and extremely low (< −5 dB). High channel noise cause
peaks of chirp segments suffering from distortion, which fur-
ther disturbs the detection of symbol in-window distribution.
Fig. 14 shows the SER for NScale under different levels of
SNRs with different SFs. NScale can decode collisions even
with extremely low SNR as it concentrates the energy of a
chirp and translate the time domain information to robust peak
features in the frequency domain. As shown in Fig. 14(a),
the SER is low under all four different SNR levels. The per-
formance slightly degrades for extremely low SNR scenarios.
However, those errors can mostly be recovered by the Forward
Error Correction strategy of LoRa. Fig. 14(b-d) shows the
relationships between SERs and SNR levels regarding three
different SFs. We observe that in high, medium and low SNR
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Fig. 16. Relationship between the SER and symbol offsets of collisions: (a) Overall performance of averaged SER. (b-d) CDF of the SERs when symbol
offset is small (< 20%), medium (20% ∼ 35%) and large (> 35%), respectively.

conditions, the SERs of 100% with high SF (SF12 and SF10)
and 90% with small SF (SF8) are lower than 20%. This
is because NScale reduces some of the noise interference,
making its SER performance robust against channel noise.
In the situation of extremely low SNR, the median SERs for
SF8, SF10, and SF12 are 0.28, 0.07, and 0.02, respectively.
In practice, small SFs in LoRa are used for near-range high
data rate transmission. Therefore, we can increase SF for the
scenario of low SNRs to improve the decoding performance
to a very low SER of 0.02.

We also explore the impact of inter-symbol time offsets, i.e.,
packet misalignment. It has been shown that the NScale lever-
ages the time offset information to separate collided packets.
We examine how the inter-symbol time offsets affect NScale’s
performance. Fig. 16(a) shows the averaged SER of NScale
in terms of the inter-symbol time offsets and SNR levels. The
SER performance of NScale decreases when packets collide
with smaller inter-symbol time offsets. This is because a small
offset leads to a small difference between in-window distrib-
utions, which further makes it difficult to distinguish collided
packets. While in practice, nodes in LoRa transmit packets in
random time, where the inter-symbol offset follows a uniform
distribution within a symbol duration. Thus, the inter-symbol
offsets vary in practice, and NScale can successfully separate
collisions in most cases. We can further solve the decoding
failures by using the retransmission mechanism of LoRaWAN
protocol. Fig. 16(b-d) present the detailed SER performance
regarding SNRs and inter-symbol time offsets. For collisions
with small offsets, decoding errors are mainly due to the
ambiguity of in-window distributions. And the influence of
the SNR is not that obvious, as high SNR collisions may
also fail to decode due to ambiguous in-window distribution
clustered incorrectly. The SER in Fig. 16(b) is higher than that
of medium offsets (Fig. 16(c)) and the large offsets (Fig. 16(d))
under all three SNR levels. While for collisions with median
and large offsets, the median SERs of NScale for both high
SNR and low SNR scenarios are below 0.02, indicating that
most collided packets are correctly decoded.

D. Impact of Concurrency

In this experiment, we examine the scalability of NScale
by decoding LoRa collisions with different number of con-
current transmissions. As mLoRa and FTrack cannot work
for SNR < 0, we only show the performance of NScale

Fig. 17. Decoding collided transmissions with different concurrency.
(a) Averaged SER. (b) Network throughput.

and Choir. We use the indoor LoRaNet testbed to efficiently
generate multi-packet collisions. To produce a collision with m
overlapped packets, we use a beacon to synchronize transmis-
sions for m different end nodes. At the gateway, we use NScale
and Choir to decompose the collided packets. The packets sent
by each end node is known in prior. Thus, we can calculate
the SER and network throughput in this experiment.

Fig. 17(a) shows the SER for NScale and Choir. As the
number of concurrent nodes increases from 1 to 10, the SERs
of both NScale and Choir grow up. We can see that the SER
of NScale increases much more slowly than that of Choir,
because NScale extracts more efficient features to separate
packets while Choir uses hardware imperfection, which is
less stable and difficult to detect, especially under inter-chirp
interference and channel noise. We further investigated the
performance of NScale and found that a symbol error happens
when the in-window distribution is incorrectly detected or a
symbol is incorrectly clustered to a packet.

We also show the overall network throughput in Fig. 17(b).
The network throughput of both NScale and Choir increase
as the number of concurrent transmitters increases, due to
the benefit of multi-packet reception from collision resolution.
Meanwhile, the network throughput of Choir is much lower
than that of NScale, especially for the large concurrency
situations. That is because the hardware offsets in Choir
inevitably resemble each other as the number of LoRa nodes
increases, which leads to symbol clustering errors. We will
further show the performance of NScale in the outdoor real
deployed LoRa networks in Sec.V-F.

E. Real Time Performance

We evaluate the performance of NScale in computation time
for decoding LoRa collisions. We implement LoRa receivers

Authorized licensed use limited to: Tsinghua University. Downloaded on September 24,2023 at 07:32:43 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: COMBATING PACKET COLLISIONS USING NON-STATIONARY SIGNAL SCALING 1115

Fig. 18. Performance comparison of computation time: (a) The overall com-
putation time for choir and NScale, (b) Anatomy of the time costs of NScale:
T0 is time of packet identification, T1 is the time of in-window distribution
detection, and T2 is the time of symbol clustering and demodulation.

of Choir and NScale, and run the receivers on a PC with the
CPU of Intel Core i7. We use the receivers to process the
received LoRa collisions with various number of concurrent
transmissions. Fig. 18(a) shows the overall computation time
of Choir and NScale receivers. Generally, the computation
time of Choir is longer than that of NScale. The Choir
receiver decomposes LoRa collisions by exploiting the fraction
of a FFT bin for each energy peak. Therefore, it performs
Fourier transforms over a wider window (10× larger) by
zero-padding the signal, which introduces a much higher
computational overhead than NScale. The computation time of
both Choir and NScale increases as there are more concurrent
transmissions involved in the collision. This is because the
increase of concurrent transmissions leads to more FFT peaks
in each demodulation window, which requires much more
processing time for identifying and estimating each single FFT
peak. However, as devices in LoRa transmit packets under a
extremely low duty cycle, there is sufficient time for LoRa
receivers to decode collisions.

We further examine the effectiveness of our proposed
real-time optimizations for NScale, i.e., packet identification
in Sec III-B and in-window distribution detection in Sec III-C.
Fig. 18(b) plots the anatomy time costs of NScale with
and without real-time optimizations. The computation time
of NScale for resolving a LoRa collision is mainly divided
into three parts, i.e., packet identification (T0), in-window
distribution detection (T1), and symbol clustering and demod-
ulation (T2). The in-window distribution detection dominates
the computation time of collision resolving, where the LoRa
receiver estimates and recovers the signal of each overlapped
chirp. The optimized method significantly reduces the time
costs of this step, as it avoids repeatedly estimating FFT peak
features from the two demodulations (i.e., demodulations with
the standard down-chirp and the non-stationary scaled down-
chirp). Besides, the optimized method reduces the packet
identification time from hundreds of milliseconds to a few tens
of milliseconds, by avoiding the operation of computation-
intensive sample-step moving correlations. For the future
work, we can adopt more efficient hardwares, such as FPGA,
multi-processor and ASIC, to further accelerate NScale so as
to meet the real-time processing requirement.

F. Performance in a Real Network

We evaluate the performance of NScale in a real deployed
LoRa network. As illustrated in Fig. 19, the outdoor LoRa

Fig. 19. Outdoor Real LoRa Network: LoRa nodes with temperature and
humidity sensors are placed around the campus, which consist of SX1268
radio chip and operate by harvesting solar power.

Fig. 20. Performance in real outdoor deployed LoRa networks: (a) Packet
Delivery Rate. (b) Network throughput.

network consists of 30 LoRa sensor nodes, each of which
can sense the temperature and humidity information from the
surrounding environment. We deploy the sensor nodes across
various environments with different distance from the gateway,
and the SNR of the received signal varies from −15dB to
10dB. With an integrated solar panel, each sensor node collects
and transmits sensed data by harvesting solar power. The LoRa
sensors transmit to the LoRa gateway in a duty-cycled manner,
where we set the duty cycle ratio of each node to 10%.
In the experiment, we change the number of active nodes in
the network, and evaluate NScale’s performance regarding to
different network sizes.

Fig. 20 shows the performance of NScale and original
LoRaWAN in the outdoor LoRa network. For the LoRaWAN
receiver without collision resolution, the Packet Delivery
Rate (PDR) decreases rapidly as the network scales. The net-
work throughput of the LoRaWAN receiver first grows up and
then rapidly drops down as the size of the network increases.
When the network size is small, the increase of concurrent
nodes improves the channel utilization. However, when the
network scales, frequent collisions occur, which significantly
degrades the performance of the LoRaWAN receiver.

The performance of NScale is much better than the orig-
inal LoRaWAN due to NScale’s decoding advantage. As the
network scales, NScale shows a relatively high PDR, where
more than 90% packets are successfully delivered even when
the size of the network reaches 30. The overall network
throughput of NScale increases as the number of transmitters
goes up. As shown in Fig. 20(b), when 30 sensor nodes operate
simultaneously, the network throughput of NScale (247 sps)
is about 27× than that of the original LoRaWAN (9 sps).
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VI. RELATED WORK

Resolve collisions in traditional wireless: Combating sig-
nal collision is a traditional problem in wireless. There are
many excellent works in this area. Some works aim to
avoid collisions by using MIMO/MU-MIMO [24]–[27] or
fallback strategy [28] on wireless devices. They synchronize
signal phases from different transmitters, enabling concurrent
transmissions without inter-packet interference. However, such
solutions have high demands on hardware overheads, and thus
is not appropriate for LPWAN devices. Successive Interference
Cancellation (SIC) eliminates signal collisions by estimat-
ing and extracting decoded symbols iteratively [29]–[31].
ZigZag [32] combats signal collisions in 802.11, where the
collision free chunk, due to the misalignment between collided
packets, are leveraged for separating overlapped signals. For
decoding an m-packet collision, ZigZag requires each end
node retransmitting m times to generate m repeated collisions.
Similarly, mZig [33] also leverages the packet misalignment
to decode collisions in ZigBee networks. It can decompose m
concurrent ZigBee packets from one collision directly. Both
the two approaches decode collisions based on the signal in
the time domain, and they cannot work well for low SNR
LoRa signal.
Parallel transmissions in LoRa: This work is inspired by
some recent advances for concurrent transmission and collision
resolution in LoRa. Netscatter [34] migrates LoRa encoding
mechanism to backscatter devices and enables hundreds of
concurrent transmissions for backscatter systems. Transmis-
sions in Netscatter are strictly synchronized. Thus, we cannot
apply Netscatter in current LoRa networks, where end nodes
transmit to the gateway in the manner of ALOHA. DeepSense
[35] enables random access and coexistence for LPWANs
by identifying collided frames using neural networks. It can
support carrier sense across different LPWAN protocols. How-
ever, in the emergence of packet collisions, DeepSense only
identifies the existence of each frame, without recovering the
encoded data bits.

The most related works to ours are Choir [11], mLoRa [10],
and FTrack [12]. Choir [11] exploits the hardware imperfection
of low-cost LoRa devices to decompose overlapped signals.
However, as demonstrated in [34], this approach does not scale
well as the tiny frequency offset is difficult to extract under
low SNR. More recently, mLoRa [10] and FTrack [12] exploit
the misaligned edges of LoRa symbols to separate collisions.
mLoRa [10] uses a collision-free chunk to boot up the decod-
ing, and iteratively reproduces and extracts collided symbols
based on the known pattern of LoRa chirps. FTrack [12]
recovers collisions by detecting the edge of each LoRa symbol
and then removing interference based on the continuity of
each symbol’s frequency. Both of the two approaches have
fundamental limitations in processing low SNR signals.

VII. CONCLUSION

We present NScale, a novel protocol to resolve the low SNR
LoRa packet collisions, whereby NScale utilizes the subtle
packet time offset to decompose multiple collided packets.
To deal with collisions with extremely low SNR, NScale

translates the packet time offset, which is vulnerable to noise,
to more robust frequency features through non-stationary sig-
nal scaling. We propose several novel techniques to address
practical challenges in NScale design. To accurately measure
frequency peaks, we propose a noise resistant iterative peak
recovery algorithm to combat peak distortion in low SNR
LoRa signal. Further, we remove the impact of the CFO and
symbol-window time offset to decode each separated packet.
We propose optimized design for diminishing the time costs of
computation-intensive tasks to meet the real-time requirements
of LoRa collision resolving. We implement NScale on USRP
N210 and thoroughly evaluate its performance in both indoor
and outdoor networks. NScale is completely implemented in
software at the gateway, without requiring any modifications
to the end nodes; thus we can apply NScale to current LoRa
networks with little overhead. The evaluation results show that
NScale improves the network throughput by 3.3× for low SNR
collided signals compared with other state-of-the-art methods.
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