
64

From Demodulation to Decoding: Toward Complete LoRa

PHY Understanding and Implementation

ZHENQIANG XU, SHUAI TONG, PENGJIN XIE, and JILIANG WANG, School of Software,

Tsinghua University, China

LoRa, as a representative of Low Power Wide Area Network technology, has attracted significant attention

from both academia and industry. However, the current understanding of LoRa is far from complete, and

implementations have a large performance gap in SNR and packet reception rate. This article presents a com-

prehensive understanding of LoRa physical layer protocol (PHY) and reveals the fundamental reasons for

the performance gap. We present the first full-stack LoRa PHY implementation with a provable performance

guarantee. We enhance the demodulation to work under extremely low SNR (−20 dB) and analytically vali-

date the performance, where many existing works require SNR > 0. We derive the order and parameters of

decoding operations, including dewhitening, error correction, deinterleaving, and so on, by leveraging LoRa

features and packet manipulation. We implement a complete real-time LoRa on the GNU Radio platform and

conduct extensive experiments. Our method can achieve (1) a 100% decoding success rate while existing meth-

ods can support at most 66.7%, (2) −142 dBm sensitivity, which is the limiting sensitivity of the commodity

LoRa, and (3) a 3,600-m communication range in the urban area, even better than commodity LoRa under the

same setting.

CCS Concepts: • Networks→ Network protocols; Network performance analysis; Wide area

networks;

Additional Key Words and Phrases: Low-power wide-area network, LoRa, physical layer

ACM Reference format:

Zhenqiang Xu, Shuai Tong, Pengjin Xie, and Jiliang Wang. 2022. From Demodulation to Decoding: Toward

Complete LoRa PHY Understanding and Implementation. ACM Trans. Sensor Netw. 18, 4, Article 64 (Decem-

ber 2022), 27 pages.

https://doi.org/10.1145/3546869

1 INTRODUCTION

Low Power Wide Area Network (LPWAN) technology has been shown to be very promising
for connecting millions of devices in the Internet of Things (IoT) by providing long-distance and
low-power communication under a very low SNR. LoRa, as a representative LPWAN technology,
has recently been widely adopted in both academia and industry [1–4]. It has been used in various
IoT applications, e.g., smart city, smart agriculture, and smart logistics [5–8]. It also attracts a large

This work is in part supported by NSFC No. 62172250, No. 61932013, Tsinghua University Initiative Scientific Research

Program.

Authors’ address: Z. Xu, S. Tong, P. Xie, and J. Wang (corresponding author), School of Software, Tsinghua Univer-

sity, Beijing, China; emails: xu-zq17@mails.tsinghua.edu.cn, tl19@mails.tsinghua.edu.cn, xiepengjin@tsinghua.edu.cn,

jiliangwang@tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

1550-4859/2022/12-ART64

https://doi.org/10.1145/3546869

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

https://orcid.org/0000-0003-4400-2086
https://orcid.org/0000-0002-5039-5229
https://orcid.org/0000-0002-8106-9952
https://orcid.org/0000-0003-1464-3245
https://doi.org/10.1145/3546869
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3546869
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546869&domain=pdf&date_stamp=2023-01-31

64:2 Z. Xu et al.

Fig. 1. (a) Real part of a base up-chirp symbol. (b) Base up-chirp symbol. (c) Shifted symbol. (d) Complete
procedure of LoRa PHY.

number of research works including resolving collisions [9, 10], LoRa backscatter [11–13], weak
signal decoding [14, 15], and so on.

LoRa adopts the Chirp Spread Spectrum (CSS) modulation mechanism, which provides anti-
interference and long-range communication capability. As shown in Figure 1(a) and (b), a base
symbol in LoRa physical layer protocol (PHY) is a chirp with frequency linearly increasing with
time. The start frequency (fstar t) of a symbol represents the encoded information. A LoRa symbol
has two segments with a sharp frequency drop, as shown in Figure 1(c). Though LoRa has attracted
much attention in academia and industry, the details of LoRa PHY, i.e., how LoRa demodulates
and decodes the received signal, is still unknown to us yet, because LoRa PHY is a closed protocol
owned by Semtech Corporation. In this work, we aim to present a complete understanding of the
LoRa physical layer and provide a better tool for analyzing the LoRa network. We reveal that most
existing understandings are incomplete and even incorrect. As a result, even the most widely used
LoRa implementation rpp0/gr-lora (RPP0) [16] has a large performance gap to the real hardware,
e.g., Packet Reception Rate (PRR) of RPP0 is only 20.0%, and RPP0 requires a much higher SNR
than LoRa.

There are two main steps in understanding LoRa PHY: demodulation and decoding.1 Demodu-
lation translates symbols to raw bits, while decoding translates these raw bits to meaningful data
bytes. The goal of LoRa demodulation is deriving fstar t of each symbol. Demodulation directly
determines the performance of the receiver. The current mainly adopted LoRa demodulation first
translates the signal to a single tone by multiplying each symbol with a linearly decreasing chirp
and extracts the frequency of the single tone as the start frequency. This operation can lead to
a high SNR loss due to the signal loss in the translation and failure to leveraging LoRa features,
which prohibits LoRa from long-range low-SNR communication. We explain the exact reasons for
signal loss in Section 3.1.

For decoding, existing works [16–21] cannot derive the order and parameters for decoding op-
erations. Thus, they have a very low PRR (e.g., under 66.7%) even for high SNR due to the in-
correct understanding of the LoRa decoding process. Meanwhile, they are often incomplete and
over-claimed, e.g., methods in References [16–18] claim they can support all spreading factors

(SF), but our experiments show that they fail to do so.

1For the transmitter, modulation, and encoding. Here we only discuss the behavior of the receiver for simplicity.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:3

Table 1. Comparison of BastilleResearch/gr-lora (BR), RPP0 and
tapparelj/gr-lora_sdr (TAPP) and our implementation

BR [17] RPP0 [16] TAPP [18] Ours

All SFs ✗ ✗ ✗ ✓

All CRs ✓ ✓ ✓ ✓

CRC ✗ ✗ ✓ ✓

Explicit Mode ✗ ✓ ✓ ✓

Implicit Mode ✓ ✗ ✓ ✓

Clock Recovery ✗ ✗ ✗ ✓

Low SNR Support ✗ ✗ ✗ ✓

Real Time ✓ ✓ ✗ ✓

Packet Coverage 4.2% 20.0% 66.7% 100%

This article provides a full understanding and a complete full-stack real-time LoRa PHY with a
provable performance guarantee. In the demodulation part, we reveal the fundamental reason for
SNR loss is phase misalignment due to window misalignment and internal symbol phase offset. We
first compensate the window misalignment by accurate window offset measurement. To address
internal symbol phase offset, unlike existing works with sampling frequency B (Bandwidth), we
oversample the signal with 2B to calculate peaks for each segment separately. Then we propose a
method to merge those two peaks with minimal sensitivity loss. We theoretically prove that the
sensitivity of our method is very close to the “perfect” demodulation. Moreover, we propose a
dynamic clock drift compensation algorithm for low-cost LoRa devices and relatively long LoRa
packets.

In the decoding part, we show how LoRa PHY translates the bits from the demodulation part
to meaningful packets. According to the observations from the official formula [22] for calculat-
ing the number of symbols in a LoRa packet, we infer and verify the packet structure from the
black-box LoRa by manipulating the packet contents. Based on the packet structure, we analyze
the requirements of each decoding process and derive the order of decoding processes for Gray
coding, deinterleaving, Hamming decoding, and dewhitening. Then, leveraging the inferred decod-
ing order and packet structure, we manipulate the transmitting packets to derive the configuration
parameters in the decoding process, the header structure, and the CRC polynomial.

We implement a real-time Software Defined Radio (SDR) LoRa PHY, as shown in Figure 1(d).
Table 1 shows the comparison with states of the art. Our implementation outperforms those ap-
proaches by (1) providing real-time decoding with very low SNR requirement, (2) supporting all
modes and parameters of LoRa, and (3) working robustly under low-cost devices with clock drift
and long packets. We theoretically show that our implementation could work under SNR = −20 dB.
The order of decoding operations is also provable, which can be verified by the generated random
sequence (Section 4.3). In our experiments, 100% of the packets could be correctly decoded. There-
fore we consider the configuration as reliable.

Contributions.

• We show the performance gap between existing LoRa implementations and the commodity
LoRa and reveal the fundamental reasons. We present a comprehensive understanding of
the demodulation and decoding of LoRa.
• We implement a complete full-stack real-time LoRa PHY on the GNU Radio SDR platform.2

Based on our analysis, we can even analyze and improve the performance of commodity

2https://github.com/jkadbear/LoRaPHY.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

https://github.com/jkadbear/LoRaPHY

64:4 Z. Xu et al.

Fig. 2. LoRa network architecture. LoRaWAN or Symphony Link protocol controls how a network server
interacts with end devices.

LoRa. For example, we show that the commodity LoRa chip is vulnerable to “phase misalign-

ment attack” (Section 6.5), and we show how to address this vulnerability.
• We conduct extensive experiments to verify the performance. The results show that the

sensitivity of our implementation reaches −142 dBm, which is the limiting sensitivity of
commodity LoRa. Our implementation has an effective communication range of 3,600 m
in the urban environment, while the commodity RPI gateways (Section 5) only reach the
maximum of 2,800 m. Our LoRa implementation has a much higher decoding success rate
(100%) than existing works (≤66.7%).

2 BACKGROUND

2.1 Known and Unknown Facts of LoRa

Figure 2 shows the mainstream LoRa network architecture. LoRaWAN [23] or Symphony Link [24]
protocol controls the whole LoRa network and provides a data interface to the application server.
There are three main communication entities in the LoRa network, i.e., network server, gateway,
and end device. The network server communicates with the gateway using a traditional internet
connection while the end devices exchange data with the gateway by using LoRa PHY wireless
protocol. Nearly all components and protocols used in Figure 2 have complete open source im-
plementations except LoRa PHY. Though there exists some reverse-engineering works, the under-
standing of LoRa PHY is not yet complete. In the following, we demonstrate some basic concepts
of LoRa PHY and discuss the details about demodulation and decoding in Sections 3 and 4.

LoRa PHY employs CSS to reach long-range transmission. The basic communication unit in
LoRa PHY is a chirp symbol. As shown in Figure 1(b), we denote this unshifted chirp symbol as base

chirp. When the frequency increases with time, we name it up-chirp and otherwise down-chirp.
The novelty of LoRa modulation is using the start frequency of a cyclically shifted symbol to encode
data. Figure 1(c) shows a LoRa symbol with two chirp segments. In LoRa specifications [22, 25, 26],
the number of bits encoded by a symbol is SF. The SF satisfies 2S F = B ·T , where B is bandwidth
andT is chirp period. There are at most 2S F cyclically shifted up-chirp symbols given a specific SF.
An up-chirp can be represented as

chirp (t ; f0) = Ae j2π (f0+
B

2T
t)t , (1)

where A is amplitude and f0 is start frequency (t = 0).
Figure 3 shows the basic understanding of a standard LoRa packet. Overall, it has three parts:

preamble, start frame delimiter (SFD), and data symbols. The preamble is a series of base

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:5

Fig. 3. A LoRa packet in the time-frequency plane.

up-chirps followed by two up-chirp symbols indicating network ID.3 The SFD is 2.25 down-chirps
indicating the start of data symbols. Data symbols include PHY header, payload, and payload CRC
(header and CRC are optional).

LoRa supports the following configurations. Code Rate (CR): LoRa applies Hamming code of
coding rate 4

5 ,
4
6 ,

4
7 , or 4

8 [22]. Low Data Rate Optimization (LDRO): When sending long packets,
LoRa enables LDRO mode for better stability at the data rate cost. Implicit/explicit mode: In explicit
mode, there is a PHY header in the packet, while in implicit mode, there is no PHY header.

Unknown:4 (1) The ideal demodulation of LoRa, i.e., how a symbol is translated to bits, is
still unknown, which is the key for LoRa to achieve low SNR and long-distance communication.
(2) None of the existing works proposes a full understanding of the LoRa packet structure.
(3) The details of LoRa specific modes are unknown, e.g., LDRO mode.

2.2 State-of-the-Art Open Source Implementations

The space of prior research in LoRa communication is quite rich, including LoRa collision decod-
ing [1, 2, 4, 9, 10, 27], LoRa chirp based backscatter [11–13, 28], LoRa network optimization [15, 29],
and so on. Unfortunately, most of them do not release public accessible implementations. Con-
sidering that the LoRa network architecture is brand new and not maturely understood by the
community, any new open source efforts deserve appreciation. Therefore, we first summarize the
public available LoRa related open source projects.

Upper Layer Implementations. The upper layer of the LoRa network has rich open source im-
plementations. For LoRa gateway and end device, Semtech corporation provides official embedded
implementations [30, 31]. For network servers, ChirpStack [32] is a widely used implementation
compatible with LoRaWAN. LoRaWAN-Server [33] provides a compact combination of network
server and application server. The lowest level code here is the driver for LoRa chips. Therefore, it
does not include the physical layer mechanism of LoRa communication.

Physical Layer Implementations. Since LoRa PHY is a proprietary protocol belonging to
Semtech corporation, there is no public document explaining all the details of LoRa PHY. Existing
researches and systems mainly rely on three open source SDR implementations, i.e., BR [17], RPP0
[16] and TAPP [18]. BR focuses on the implicit header mode of the LoRa packet. BR applies dechirp-
ing based demodulation. It ignores some crucial details about dechirping and is not reliable in low
SNR. We will discuss the details in Section 3. Besides, the implementation of BR only supports
decoding LoRa packets with SF=8. Our tests show that BR can only decode the first four bytes of
a packet and fails to decode any complete packet with more than four bytes. RPP0 targets explicit
header mode LoRa packet decoding. As shown in Figure 1(c), RPP0 demodulates LoRa symbols
by finding sharp frequency changes and then uses them to estimate the start frequencies of the

3The two symbols are not base up-chirps typically. They are used like network masks to separate different networks. For

example, they are set to 0x0304 for public network in LoRaWAN.
4Though existing works have revealed many details about LoRa PHY, the non-ideal demodulation performance and non-

100% decoding success rate mean their results are incomplete.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:6 Z. Xu et al.

symbols. RPP0 relies on time-domain information, and it cannot decode LoRa packets for SNR<0.
TAPP is a recent implementation of LoRa. TAPP is not optimized for LoRa demodulation, which
results in high computation overhead. PRR of TAPP decreases when the decoder cannot consume
the input data in time. According to our evaluation, its packet loss reaches 70% for a data rate of
one packet per second. The average PRR of TAPP is only 66.7%. For decoding, none of those exist-
ing works can provide full decoding capability, and thus they can only decode a portion of LoRa
packets. Besides, there are other LoRa PHY related works that provide open source implementa-
tions. Charm [14] focuses on weak signal decoding by leveraging the multi-gateway structure of
the LoRa network. However, the Charm decoder [34] is only implemented in offline mode with
MATLAB. Moreover, the author ignores the decoding procedure and the phase alignment prob-
lem (see Section 3). TinySDR [35] is an SDR platform tailored for internet-of-things networks.
The author implements a LoRa modulator [36] in FPGA, which shows us a convenient hardware
chirp generation method. But the demodulation process is commonly much more complicated than
modulation, and there is no open source FPGA-based LoRa demodulator currently. In addition, the
decoding process is also not considered in TinySDR. We see that existing works have not provided
a fully usable implementation and complete understanding of LoRa PHY.

Fundamental limitations of existing works. (1) Existing works cannot work for low SNR,
and thus they do not have the crucial advantage of LoRa. (2) Existing works cannot provide full
decoding capability for LoRa, and their performance is significantly lower than the commodity
LoRa hardware. They cannot provide full support of LoRa, i.e., LDRO mode, all SFs, and so on.

Our goal. We aim to provide a complete LoRa PHY implementation, including demodulation
and decoding, to enable extremely low SNR signals receiving and all parameters/modes of LoRa.

3 DEMODULATION

In this section, we reveal the demodulation process of LoRa and present how to break the funda-
mental limitations of existing LoRa implementations.

3.1 Phase-aligned Dechirping

The LoRa demodulator converts chirp symbols to bitstreams by first dechirping the received sig-
nal. The dechirping process mainly consists of two steps: First, it multiplies each received chirp
with a base down-chirp, and then it performs the Fourier transformation on the multiplication
results, translating chirps to energy peaks in the frequency domain. Ideally, the multiplication will
result in single tone signals with continuous phase, whose energy can be accumulated to a single
peak, as shown in Figure 4(a3) (denoted as IDEAL). However, in practice, there is an inevitable
phase misalignment when the chirp frequency drops from its maximum to minimum. This phase
misalignment is mainly induced by the hardware instabilities of inexpensive LoRa devices and
is randomly distributed between 0 and 2π . With the phase misalignment, energy peaks from the
Fourier transformation are severely distorted, as shown in Figure 4(a4), which limits the LoRa
demodulation performance, especially under low SNR.

Existing works fail to resolve the phase misalignment problem in dechirping. Thus, their per-
formance deteriorates dramatically in low SNR scenarios, far from the ideal sensitivity of LoRa
demodulation. Our goal is to approach the ideal sensitivity of LoRa demodulation under phase
misalignment. The design of our LoRa demodulator mainly consists of the following components.

Window Alignment. We need to accurately align the demodulation window (sample points
level) with each symbol to retain the energy of the entire symbol for the demodulation process.
Traditional works use preamble correlation for window alignment. However, merely using pream-
ble correlation cannot achieve accurate alignment due to Carrier Frequency Offset (CFO). We
leverage the SFD part in the LoRa packet for window alignment while eliminating the impact of

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:7

Fig. 4. The main step of dechirping is multiplying a down-chirp and then doing FFT. (a) Normal dechirping
with SNR loss. For an ideal situation, we derive a peak like (a3). But for a non-ideal situation, the frequency
peak would be distorted like (a4), which incurs wrong demodulation results. (b) Our proposed phase-aligned
dechirping. We use the low-pass filter and oversampling to separate the two chirp segments in a LoRa symbol
and then combine them. (b4) and (b5) give the fine and coarse phase-aligned dechirping results, respectively,
which are stable under any situation.

Fig. 5. Window alignment using base up-chirps and down-chirps.

CFO. The key operation is to combine the down-chirps in SFD together with up-chirps in the pre-
amble. We apply dechirping to both of them (the down-chirp is multiplied with a base up-chirp). If
the demodulation window is perfectly aligned with the signal, then the peak of the up-chirp and
peak of the down-chirp appear at the same frequency, regardless of the CFO, as shown in Figure 5.
Otherwise, there is a significant difference in the frequency of the two peaks, depending on the
time offset between the chirp and the demodulation window. Therefore, we can achieve accurate
alignment based on the frequency of peaks corresponding to the preamble and SFDs.

Oversampling and Peak Merging. We have previously revealed that the fundamental rea-
son for SNR loss in demodulation is the peak distortion due to the phase misalignment when the
chirp frequency drops from its maximum to minimum. To address this problem, we propose an
oversampling-based approach that recovers the peak distortion in the existence of phase misalign-
ment and approaches the ideal sensitivity of LoRa demodulation.

As illustrated in Section 2, LoRa modulates signals by cyclically shifting the frequency of a base
up-chirp. Each modulated chirp consists of two chirp segments, one with the initial frequency
of f0 and the other with f0 − B. Existing works demodulate the received chirp symbols using
a sampling frequency equaling to the chirp bandwidth B. Thus, after multiplying with the base

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:8 Z. Xu et al.

down-chirp, both chirp segments are translated to single tone signals of the same frequency due
to frequency aliasing. However, there exists an inevitable phase misalignment between these two
chirp segments. When performing the Fourier transformation on the whole symbol, the energy of
these two chirp segments adds up destructively, leading to peak distortion and SNR loss for LoRa
demodulation. Existing works have no idea of the value of phase misalignment. Thus, they cannot
distinguish the signal of these two chirp segments and fail to correct the peak distortion.

We propose an oversampling-based strategy for efficiently separating the two chirp segments in
the frequency domain. Specifically, as the initial frequencies of the two chirp segments are f0 and
f0−B, when oversampling the signal with a frequency higher than 2B (i.e., Fs ≥ 2B), the dechirping
results in two distinct peaks separately locate at f0 and Fs − B + f0, as shown in Figure 4(b3).
Since there is no phase misalignment within each chirp segment, both of these two peaks are
distortion-free. This gives us a chance to perfectly concentrate the energy of the whole chirp by
coherently adding up these two peaks of chirp segments and thus eliminating the influence of
phase misalignment. For the rest of this section, we illustrate how to merge these two energy
peaks in the frequency domain efficiently with small sensitivity loss for LoRa demodulation.

Due to the existence of phase misalignment, the phase of the two peaks in Figure 4(b3) are
out of coherence. Thus, directly adding up those two complex peaks will not increase the peak
height or even cancel each other due to the phase difference of these two peaks. We propose
Fine-grained Phase Alignment (FPA) to search for all possible values of phase misalignment
Δφ = i×2π

k
(i = 0, 1, . . . ,k −1) and compensate it before adding up two peaks. We iterate k possible

phase offset and select the Δφ that generates the highest peak. The result of FPA is shown in
Figure 4(b4). Compared with Figure 4(a3), FPA can approach the performance of IDEAL as the
phase difference is compensated.

The searching process for determining the value of the phase misalignment has high compu-
tational complexity. To reduce this overhead, we further propose Coarse-grained Phase Align-

ment (CPA), which requires much less computation overhead and thus can work on low-cost
hardware with very limited computation resources. The key observation is that the peak amplitude
is in proportion to the energy of the corresponding chirp segment. Given the energy of the whole
symbol is exactly the sum of the two chirp segments, if we directly add up the absolute value (am-
plitude) of part A and part B, then the resulted peak will have the same height as that of the IDEAL
peak. The result of CPA is shown in Figure 4(b5). We see that CPA significantly changes the shape
of the peak, i.e., the width of the main lobe increases. Besides, CPA also lifts the noise level during
the adding up process, thus slightly degrading the demodulation performance compared with FPA.

Depending on the computing power of the receiver, we can switch between FPA and CPA meth-
ods. In the following, we theoretically analyze the symbol error rate (SER) with respect to dif-
ferent SNRs for IDEAL, FPA, and CPA.

We assume that the LoRa signal is transmitted over an additive white Gaussian noise

(AWGN) channel, where the noise is modeled as following the complex Gaussian distribution.
During the dechirping process, both the chirp symbols and the noise are transformed into energy
peaks in the frequency domain. A symbol error happens when any of the noise peaks exceeds the
peak of the target symbol. Suppose the peak height of the target symbol is hd , and the maximum
peak corresponding to noise is hn ; we can derive the expected symbol error rate as

SER = P (hd < hn). (2)

SER is a function of SNR theoretically. The calculation details ofhd andhn for IDEAL, FPA, and CPA
are listed in Section 8. We plot the theoretical performance of IDEAL, FPA, and CPA under SF8/12 in

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:9

Fig. 6. Theoretical SER-SNR curve for (a) SF8 and (b) SF12.

Fig. 7. Zero-padding effects. Red dots represent the DFT results after dechirping. Black lines represent the
DTFT result after dechirping.

Figure 6.5 The searching step length in FPA (i.e., 1/k) is set to 1/16 empirically (a tradeoff between
performance and computation overhead). We see that both FPA and CPA have performance very
close to IDEAL for SF12, while the theoretical SER of CPA in SF8 is slightly larger than other
two methods. In summary, the theoretical analysis tells us that FPA and CPA are two practical
and effective methods in LoRa demodulation, which is further validated in experiment results in
Section 6. Our theoretical analysis also shows that LoRa could work under extremely low SNR (i.e.,
SNR as low as −20 dB), as can be seen from Figure 6(b).

Peak Refinement. Previously, we have illustrated how to convert received chirps to frequency
domain peaks. Next, we need to estimate the highest peak frequency to recover the modulated
data bits. However, in practice, height estimation for peaks is closely related to the frequency res-
olution after the Fourier transformation. The black line in Figure 7(a) shows the result of ideal
Discrete-Time Fourier Transform (DTFT) on the target signal, which is a continuous function
of frequency. In practice, the receiver only performs Discrete Fourier Transform (DFT), a sam-
pled version of DTFT in the frequency domain, on the target signal. The output of DFT is marked as
red dots in Figure 7. The naive DFT has a low-frequency resolution. Thus, its outputs are sparsely
distributed over the ideal DTFT curve, decreasing the derived peak height and also impacting the
peak estimation. We apply zero-padding to the signal in the time domain to obtain accurate peak
estimation, equivalent to interpolation in the frequency domain. As shown in Figure 7(b), with
zero-padding, the frequency resolution of DFT improves significantly, benefiting our peak estima-
tion. We show that fourfold zero-padding achieves a balance between computation overhead and
demodulation sensitivity in Section 6.3. The benefit of more zero-padding is marginal.

3.2 Clock Recovery

Since LoRa is commonly applied on low-cost devices, the equipped oscillators may not have high
accuracy, which results in inaccurate bin values. Table 2 shows the first eight dechirped peak bins
of two packets from a LoRa device having about 16-kHz CFO. We observe that the fractional part

5Bit-level parameters such as CR and CRC are irrelevant to SER in symbol level. It should be noted that bandwidth does not

appear in the above SER formula, because SNR is a function of bandwidth (if we increase the bandwidth without raising

the transmitting power, then the in-band SNR will drop).

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:10 Z. Xu et al.

Table 2. Peak Bin Drift under SF10 and SF12 (with Bandwidth 125 kHz)

Expected: the ideal bins without clock error; received: the actual received bins.

of the peak bins keeps drifting with time. If we do not cancel that drift, then the fractional bins
will accumulate and incur errors in the integer bin. Such bin drifts mainly come from Sampling

Frequency Offset (SFO). Due to the difference in sampling frequency, the actual LoRa symbol is
τ shorter (or longer) than the standard symbol periodT . Therefore, the start frequency of the next
symbol has an additional drift as

Δf =
B

T
· τ . (3)

Because the carrier frequency and sampling frequency are generated by the same oscillator, we
have

τ

T
=

SFO

fsamp
=

Δfosc

fosc
=
CFO

fRF
, (4)

where fRF is reference carrier frequency, fosc is reference oscillator frequency, and Δfosc is oscilla-
tor frequency bias. After translating to bin values, the estimated bin drift between two consecutive
symbols is6

Δbin =
Δf

B/2S F
=
CFO

fRF
· 2S F . (5)

For example, when CFO= 16 kHz, fRF = 470 MHz, and SF = 10, the estimated bin drift Δbin ≈
0.035, which matches the tendency in Table 2. We subtract accumulated Δbin from the peak bins
before decoding.

Another thing we need to consider here is the LDRO mode. Typically, when a chirp period is
too long (i.e., T > 16 ms), LDRO is automatically enabled in LoRa chips [22]. In LDRO mode, as
seen in the bottom of Table 2, the expected bin values always have the form of 4n+1, which means
the two Least Significant Bits (LSBs) do not encode data. Such a design aims to better protect
the data, since lower bits are more vulnerable in long packet transmitting. For LoRa signals lasting
a short time, the two LSBs are stable enough to encode data (e.g., SF10 and bandwidth 125 kHz).
Nevertheless, in the experiment, we find that the first eight symbols are always in LDRO mode to
protect the header information (Section 4).

6Without zero-padding, one integer bin in LoRa always represents a frequency of B

2S F
regardless of the number of FFT

points or sampling frequency.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:11

4 DECODING

4.1 Overview

This section about decoding is not a review of previous works. We aim to provide a provable in-
ference about the LoRa packet structure, decoding order, and configurations. From official LoRa
datasheets [22, 25, 37] and patents [26], we know Equation (6) for calculating the number of sym-
bols in a packet. In contrast, the packet structure is unknown. We also know that there are four
main processes in decoding: Gray coding (G), deinterleaving (I), Hamming decoding (H), and de-
whitening (W). In contrast, the order of the processes and the configuration parameters of each
process are unknown. To show how LoRa PHY translates the bits from the demodulation module
to meaningful packets, we analyze the LoRa decoding by three steps. First, we infer the packet
structure from the black-box LoRa leveraging the number of symbols formula. Next, we reveal the
order of the four main decoding processes. Finally, we infer the configuration parameters of each
decoding process.

4.2 Packet Structure Inference

The official document [22] provides a formula to calculate the number of symbols in a packet:

nsym = 8 +max
(⌈

2PL + 4CRC − 5IH − SF + 7

SF − 2DE

⌉
· 4

CR
, 0

)
, (6)

where PL is the number of payload bytes, SF is spreading factor,CRC is 1 if CRC check is enabled
and otherwise 0, IH is 1 if implicit header mode (without header) is enabled and 0 if explicit mode
(with header) is enabled, and DE is 1 if LDRO is enabled and otherwise 0.

We can derive the following properties from Equation (6):

• A LoRa packet has at least eight data symbols as nsym ≥ 8.
• 2PL+ 4CRC: The nsym of a packet with PL payload bytes and CRC check enabled is equal to

the nsym of a packet with PL + 2 payload bytes and CRC check disabled. We can infer that
the CRC check takes 2 bytes in the packet.
• 2PL + 4CRC − 5IH : Similarly to CRC, we can infer the header takes 2.5 bytes.
• SF − 2DE: SF is the number of bits in a data symbol. Enabling LDRO causes the reduction of

two bits per data symbol.
• 4

CR
: The number of data symbols increase with the unit of 4

CR
(CR= 4

5 ,
4
6 ,

4
7 , or 4

8). For example,

CR = 4
7 means the packet applies (7,4) Hamming code, and nsym has the form 4

CR
n + 8 =

7n + 8(n = 0, 1, 2, . . .).

Based on the properties, we then manipulate the data packets to infer the packet structure. We
first gradually increase packet size and observe a stairlike increase of the number of data symbols
in real signals. IfCR = 4

7 , then the number of symbols nsym would increase following an arithmetic
sequence (i.e., 8, 15, 22, . . .). We also observe that when continually increasing the packet size, the
newly added bytes are encoded in the last 4

CR
symbols, and the first 4

CR
(n − 1) + 8 symbols do not

change. It reveals that data bytes are encoded by a 4
CR

symbols block.
Further, we find that the first eight symbols are specially treated. Whether in explicit or implicit

header mode, the first eight symbols’ values always appear in the form of 4k + 1(k = 0, 1, 2, . . .),
which means the last two bits of data are discarded, and there are SF − 2 bits data in each symbol.
We can infer that the first eight symbols are in LDRO mode, i.e., DE = 1. LDRO gives better
protection, and the header may be in the first eight symbols. We know that LoRa uses coding rate
CR to protect the payload, and the payload bytes are encoded by a 4

CR
symbols block. Similarly, the

first eight symbols form an eight symbols block, and we guess that it uses a coding rate 4
8 to give

the header the highest protection (4 parity bits for a nibble). We also observe that the first eight

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:12 Z. Xu et al.

Fig. 8. The inferred LoRa packet structure for LDRO mode disabled/enabled. When LDRO mode is disabled,
only the first eight symbols have ignored bits (protecting header information). When LDRO mode is enabled,
the least significant two bits are ignored for all the symbols.

symbols encode payload bits in implicit header mode. Such a design can reduce the complexity
of the decoding hardware complexity, because the explicit and implicit header mode can now be
processed with the same procedure.

Figure 8 shows the inferred packet structure of a packet with LDRO mode disabled/enabled. In
LDRO mode, the last two bits in each symbol are discarded. No matter whether the LDRO mode is
enabled or disabled, the first eight symbols are in LDRO mode and use coding rate 4

8 . The following

symbols are in blocks containing 4
CR

symbols. The first four symbols encode data bits while the
rest symbols encode parity bits.

Packet Structure Verification. We verify the above packet structure by comparing Equa-
tion (6) and the calculated symbol number using the inferred packet structure. For SF ≥ 7, the
first eight symbols contain 8 · (SF − 2) · 4

8 = 4SF − 8 ≥ 20 data bits. Therefore, the first eight
symbols could always include all header information. Except the header, the first eight symbols
can contain 4(SF −2)−20(1− IH) = 4SF +20IH −28 bits payload. Suppose there are PL bytes (8PL
bits) payload in total. If CRC is enabled, then additional 16 bits are needed. Except the first eight
symbols, the total number of required data bits for the rest symbols is 8PL+16CRC−20IH−4SF+28.
Whitening and Gray decoding do not affect the total number of bits and the total number of sym-
bols. The Interleaving operation only requires us to pad redundant bytes when the rest payload
bytes cannot fill a block, thus not affecting the total number of symbol blocks. Each block has 4

CR

symbols, and each symbol in the block could encode SF − 2DE bits. Due to the existence of parity
bits, only 4(SF − 2DE) bits in a block are actual data bits. Then the total number of symbols in the
packet is

8 +

⌈
8PL + 16CRC − 20IH − 4SF + 28

4(SF − 2DE)

⌉
· 4

CR
. (7)

It is obvious that formula (7) is the same as Equation (6), which means the inferred packet structure
is correct.

4.3 Order of Decoding Operations

In this section, we try to reveal the order of the four main processes in LoRa decoding: Gray coding
(G), deinterleaving (I), Hamming decoding (H), and dewhitening (W). It is easy to know that Gray
coding should be the first step, because it intends to solve the symbol adjacent drift problem (see
Gray Coding in Section 4.4). Hamming decoding operates on bytes stream while a LoRa symbol
contains SF − 2DE bits. So it relies on the transformed bytes stream after deinterleaving. Thus, the
order of “G, I, H” should be “G→I→H.” Hence, dewhitening has three possible positions, i.e., after

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:13

“G,” “I,” or “H.” The implementations of BR, RPP0, and TAPP assume three different dewhitening
positions, respectively.

We prove that the position of dewhitening does not affect the decoding results. Because the
encoding process order is the reverse of decoding order, we use the operation in encoding to show
the influence of the position of “W.” Consider the data as a bit vector D, then interleaving is an
operation that rearranges the position of bits. We can represent interleaving as a matrix I with
each row or column containing only one “1.” Hamming coding, as a linear coding method, can be
represented as a matrix H . We have H · D = [P · D D], where P is the parity matrix. Whitening
is W ⊕ D, where W is a random bit vector and ⊕ is exclusive-or (XOR). Following are the three
possible orders of decoding and the corresponding encoding operations:

“W→I→H”: W1 ⊕ (I · [P · D D]), (8a)

“I→W→H”: I · (W2 ⊕ [P · D D]), (8b)

“I→H→W”: I · [P · (W3 ⊕ D) (W3 ⊕ D)], (8c)

whereW1,W2, andW3 are three different random bit vectors. Formula (8b) can be rewritten as

(I ·W2) ⊕ (I · [P · D D]). (9)

Therefore, formula (8a) and formula (9) are equivalent (let W1 = I ·W2). Formula (8c) can be
rewritten as

I · ([P ·W3 W3] ⊕ [P · D D]). (10)

Formula (10) is a special case of formula (8b) (letW2 = [P ·W3W3]). Therefore, both “I→W→H” and
“I→H→W” can be represented by “W→I→H,” which means the position of “W” does not affect the
final decoding results. We will show the correct position for “W” in Section 4.4.

For the convenience of analysis, we first assume the decoding order is “G→W→I→H.” Because
the even parity of all-zeros is zero and interleaving in LoRa is just a diagonal realignment of all
bits, the output codewords after “H” and “I” are zeros when the input bits are all zeros. Here we
assume that LoRa adopts commonly used even-parity check, and the final results show that this
assumption is correct. “W” is the XOR of data values and a pseudo-random sequence. When the
decoding order is “G→W→I→H,” as x ⊕ 0 = x , if we set all transmission bits to zeros, then the
output values after “G” are the dewhitening sequence. Then, we could use the derived dewhitening
sequence to recover the temporal results before “I” and “H” for further analysis.

4.4 Configuration of Each Operation

This section reveals the key configurations of the four operations in LoRa decoding: Gray coding,
deinterleaving, Hamming decoding, and dewhitening. We also show how to reveal the header
structure and CRC polynomial.

Gray Coding. Gray coding is widely used in many wireless communication systems, which is a
mapping from a bit vector to a binary representation. The adjacent representations of Gray coding
only have a one-bit difference. In wireless communication systems, it is more likely to happen
that we may misidentify a symbol to its adjacent symbol rather than another random symbol. For
example, in LoRa modulation, the adjacent bin drift is common as described in Section 3.2. With
Gray coding, the bit error caused by adjacent misidentification is reduced to one bit per symbol,
which has a high possibility to be corrected by the error correction mechanism. The standard Gray
coding can be expressed as

v = v0 ⊕ (v0 >> 1), (11)

where v0 represents the raw demodulated bin value, >> is the bitwise right shift operation, and
v is the Gray coding output. However, when we continue our analysis based on natural symbol

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:14 Z. Xu et al.

Fig. 9. An example deinterleaving block for 8 SF8 symbols (CR = 4
8). Each row in the block is an 8-bit

representation of a LoRa symbol after Gray coding. bi, j represents the jth bit of the ith symbol. For example,
bi,1 is the LSB of the symbol i . (a) Column-major order row-line interleaving, the nth codeword is composed
of bits bi,n (i = 1, . . . , 8). (b) Diagonal interleaving used in LoRa, the nth codeword is composed of bits
bi, (i+n−1)%8+1 (i = 1, . . . , 8).

mapping and standard Gray coding, we cannot decode packets with a 100% decoding success rate.
Project RPP0 suffers from this problem and still contains an unfixed bug.7 To understand the reason,
let us recall the LDRO mode of LoRa. when LDRO is enabled, the encoder will put data bytes into
high SF−2 bits of a symbol and then add “1” to reduce the influence of bin drift. From the hardware
perspective, it is reasonable to add “1” under any condition, because we can save the circuit cost to
judge whether LDRO is enabled. We guess that all symbols output from the encoder have one bin
shift. If it is true, before we apply Gray coding, then we should subtract “1” from the demodulation
results. Fortunately, our guessing is supported by the decoding results. The process of “G”in LoRa
decoding could be modified as

v = (v0 − 1) ⊕ ((v0 − 1) >> 1). (12)

Note that TAPP also applies similar operations on Gray coding as we do, but they explain it as
a different Gray coding mechanism and uses brute-force algorithm to derive the additional "one."
However, it seems unnatural to use a non-standard Gray coding. By contrast, our explanation is
more reasonable.

Deinterleaving. Interleaving is used to reduce the impacts of burst errors. With interleaving,
the errors could be distributed to multiple bit groups and corrected by forward error correction

(FEC). It is mentioned [26] that LoRa applies diagonal interleaving instead of conventional row-
line interleaving. Figure 9(a) shows the column-major order row-line interleaving of eight symbols.
For row-line interleaving, the LSBs (bi,1) of the eight symbols are assembled into a byte. From
Section 3, we know that the LSBs of a symbol are more fragile than the most significant bits

(MSBs) of the symbol. From the perspective of FEC, it is a bad design to group fragile bits together.
Figure 9(b) shows diagonal interleaving used in LoRa. Diagonal interleaving distributes the fragile
LSBs into different bytes and is more robust. We then manipulate the transmitted packets to derive
the detailed diagonal mapping. As an example, we send packets with SF = 8 andCR = 4

8 in implicit
header mode. Thus, the interleaving block is an 8× 8 block as shown in Figure 9(b). First, we assume
the FEC used in CR = 4

8 is the standard (7, 4) Hamming code with one bit extension. Therefore,
after “G” and “W,” the codeword for nibble “0000” is “00000000,” and the codeword for “1111” is
“11111111.”8 Suppose the sending bytes are all zeros except that the fourth byte is 0x0F, we observe

7https://github.com/rpp0/gr-lora/issues/99.
8Note that here we have removed the influence of whitening.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

https://github.com/rpp0/gr-lora/issues/99

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:15

b11 = b22 = · · · = b88 = 1 in Figure 9(b). Therefore the main diagonal represents the fourth byte
0x0F. The one bin shift problem mentioned in Gray coding reflects here that we cannot always get
eight ones in a block if we directly apply the standard Gray coding. Shifting the mapping by one
solves this problem and perfectly matches our following decoding process. By changing the all-1
data bits in the transmitted packet, we can derive the entire mapping for interleaving as shown in
Figure 9(b). For other parameters, the deinterleaving process is similar. The only difference is that
the block size becomes 4

CR
× (SF − 2DE). As a result, we summarize the deinterleaving process as

ci, j = bj, (i+j−1)%(S F−2DE)+1, (13)

where ci, j is the jth bit of the ith codeword after deinterleaving, bj,i is the ith bit of the jth symbol

after Gray coding, and i ∈ {1, 2, . . . , 4
CR
}, j ∈ {1, 2, . . . , SF − 2DE}.

Hamming Decoding. After deinterleaving, we get the encoded data in the form of codewords,
but the position of data bits and parity bits in a codeword are still unknown. LoRa provides four
valid CR values (4

5 ,
4
6 ,

4
7 , and 4

8), which determine the codeword length and thus FEC strength.

When CR is set to 4
7 or 4

8 , LoRa applies Hamming(7, 4) code or extended Hamming code with

one additional parity bit. When CR is set to 4
5 or 4

6 , LoRa can detect bit errors but cannot correct

them. First, we assume that a nibble with code rate 4
8 is protected by the standard Hamming(8, 4)

code. But our final analysis results show that this assumption requires some modifications. To
determine the position of each data/parity bit in the codeword, we could vary the sending bytes
but keep one specific bit fixed. For example, to test the position of the LSB of the fourth byte,
we set the transmitting bytes as 0x01, 0x03, 0x05, · · · , 0x0F.9 Then the bit that is always 1 in the
interleaving block is our target, i.e., LSB in this case. We find that the four LSBs in the codeword
are data bits while the four MSBs are parity bits, which differs from the standard Hamming(8, 4)
code p1p2d1p3d2d3d4p4, where di is the ith data bit and pi is the ith parity bit. Equation set (14)
shows the relation between data bits and parity bits in standard Hamming(8, 4) code,

p1 = d1 ⊕ d2 ⊕ d4

p2 = d1 ⊕ d3 ⊕ d4

p3 = d2 ⊕ d3 ⊕ d4

p4 = d1 ⊕ d2 ⊕ d3 ⊕ d4.

(14)

We denote the four LSBs as d1,d2,d3,d4 sequentially. To find which bit in the MSBs is pi , we vary
the data bits to keep pi = 1. For example, selecting the codewords with d1 ⊕ d2 ⊕ d4 = 1, the
parity bit that always equals “1” is the parity bit p1. Similarly, the positions of p2 and p3 are derived.
However, the remaining parity bit does not fit for the definition of p4. After careful observation,
we find that it is a parity covering d1,d2 and d3, i.e.,

p5 = d1 ⊕ d2 ⊕ d3. (15)

For other code rates, we can derive the bit position similarly. When CR = 4
7 is used, parity bit p1

is abandoned. When CR = 4
6 is used, parity bits p1 and p2 are abandoned. When CR = 4

5 is used,
there is only one parity bit and it is natural to use p4 to cover all bits. The conclusion does not
change when SF varies. Figure 10 shows the bit positions for different code rates. Note that LoRa
applies non-standard Hamming code, the naming number of parity is arbitrary and our naming is
just one kind of them.

Dewhitening. In Section 4.3, we assume the dewhitening operation happens after “G” and we
prove that the dewhitening position does not affect the final results. We here discuss the “cor-
rect” position for dewhitening. The process of deinterleaving and Hamming decoding has been

9Note that we cannot directly control parity bits.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:16 Z. Xu et al.

Fig. 10. Parity bits and data bits position in a codeword with CR = 4
8 ,

4
7 ,

4
6 ,

4
5 .

Fig. 11. The whitening sequence of “G→I→H→W.”

interpreted clearly above. We move the position of “W” to the other two positions and send
all-zero bytes to derive the whitening sequence under different order selections. We find that
“G→W→I→H” gives different whitening sequences for various combinations of SF and CR while
the whitening sequence of “G→I→W→H” and “G→I→H→W” keep the same. Using the same se-
quence for all packets is more reasonable. Thus we first exclude “G→W→I→H.” Then we need to
choose the correct order from “G→I→W→H” and “G→I→H→W.” LoRa chip datasheet [22] men-
tions that the whitening sequence in FSK mode is generated by a Linear Feedback Shift Register

(LFSR). We guess that there also exists a LFSR generating the whitening sequence for LoRa mode.
We apply the Berlekamp–Massey algorithm [38] on the whitening sequences of the two decoding
orders to obtain the corresponding LFSR. For “G→I→W→H,” no matter how we change the input
order of the bits (e.g., LSB first or MSB first), the minimal LFSR size we get from the Berlekamp–
Massey algorithm is at least 64. But we know 2n bits sequence could always be constructed from an
n-bits LFSR. Any sequence containing 128 bits could be represented as the output of a 64-bits LFSR.
The LFSR of the “G→I→W→H” sequence is too long. Carefully checking the whitening sequence
of “G→I→H→W” as shown in Figure 11, we find that it is not like typical random bits, and each
byte seems to be the state of an LFSR. We collect the MSBs of the sequence bytes, as shown in the
red box of Figure 11, to run the Berlekamp–Massey algorithm. The LFSR polynomial for deriving
such sequence is x8 +x6 +x5 +x4 + 1. It can be seen from the literature [39] that it is the maximal-
length polynomial for 8-bits shift-register. Figure 12 shows the structure of the LFSR, and we can
see that all the eight bits of the register compose a byte of the whitening sequence, and each bit
of the register is used to whiten one-bit data. Since the whitening sequence of “G→I→H→W” can
be generated by a LFSR with a much smaller length, we consider it the correct order.

4.5 CRC

After four steps of Gray coding, deinterleaving, Hamming coding, and dewhitening, the raw LoRa
PHY packets are shown. In previous sections, we send packets in implicit header mode and disable
CRC check. We next try to analyze the CRC algorithm used in the LoRa payload. From our obser-
vation in Section 4.2, CRC checksum occupies 16 bits at the tail of a packet. Therefore, we first

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:17

Fig. 12. LFSR x8 + x6 + x5 + x4 + 1 used in LoRa.

send explicit header and implicit header packets with the same data content to check the coverage
of CRC. The results show that the CRC is only performed on the payload. Calculating the CRC
checksum of a series of bits, in theory, is considering it as a large binary number and calculating
the remainder with respect to a “divisor.” The divisor is usually represented as a polynomial based
on GF (2) (Galois field of two elements), e.g., x3 + x + 1. Analyzing the CRC part of LoRa PHY
is indeed finding the polynomial used. A feature of CRC is that for a polynomial of degree n, if
the original dividend is 1, then the remainder is the polynomial itself. If we construct a packet
only with last bit equaling 1, then the CRC checksum in the last two bytes tells us exactly what
polynomial is used. Meanwhile, the CRC polynomial cannot be randomly selected; it must follow
some principles to ensure some specific requirements. Therefore, it is natural to choose the poly-
nomial from standard CRC polynomials. Comparing the polynomial we derive and the standard
polynomial sets, it takes little effort to find the actual polynomial used. Based on the above anal-
ysis, we enable the payload CRC in implicit header mode and set the last two bytes of payload
as 0x0001, 0x0080, 0x0100, and 0x8000, respectively (other bytes are set to zero). Since we are not
sure the endian and LSB-MSB order in CRC hardware implementations, we test the four possible
combinations. The result, however, surprisingly, is beyond our expectation. Whatever we set in
the last two payload bytes, CRC checksum are exactly the same with the last two payload bytes.
In common CRC implementation, before doing the remainder calculation, it will pad n zero bits
after data to ensure that the last n bits are also under full CRC protection.10 The phenomenon we
observed means that the zero-padding step is not implemented in LoRa PHY. Therefore, we send
0x0001, 0x0080, 0x0100, 0x8000 at the third and fourth bytes from last to derive the polynomial.
The received CRC bytes are 0x1021, 0x9188, 0x3331, and 0x1B98, respectively. 0x1021 refers to the
polynomial named CCITT-16, being x16 + x12 + x5 + 1. We apply CRC check with this polyno-
mial and test packets with random bytes. The CRC checksums calculated by our implementation
are consistent with the CRC bytes in all samples. Due to the characteristic of CRC, it is hard for
a wrong CRC implementation to have the same checksum with the correct one even in a small
group of samples, which means our result is correct.

4.6 Header

The left unknown part about LoRa PHY is the header. In Section 4.2, we have already known
that the header in explicit mode has 20 bits. Our goal is to find the organization and meaning
of the 20 bits. Payload Length (PL) is said to be encoded in the header and occupies at least 8
bits, because the maximal payload length is 255. We vary the payload length and try to decode
the packet using the same decoding process in implicit header mode assuming the header is also
whitened. Unfortunately, we are not able to recover the data bytes in implicit header mode. The

10Though the code level implementation may not explicitly contain the zero-padding step [40].

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:18 Z. Xu et al.

Fig. 13. Header structure of LoRa in the first three bytes.

problem comes from the whitening sequence used for header. Nonetheless, by observing the bits
that change with the payload length, we can identify the position of PL. Note that in the first 2.5
bytes, only the bits of PL and header CRC will change when varying packet payload length. We
observe that the bits in positions 1–8 and 16–20 are possible PL bits. Additionally, the intermediate
results show us that the header is not whitened and the first byte of a header before dewhitening is
exactly PL. Our derived LFSR can only generate 255 possible whitening bytes. There are no more
additional whitening bytes for header dewhitening. Hence it is reasonable not to whiten the packet
header. Our following tests on finding other bits strengthen this assumption. Therefore, we do not
apply dewhitening operation on header in the following. Changing one parameter and fixing other
parameters, the position of code rate and payload-CRC-enable bit are determined similarly. The
code rate bits are 001, 010, 011, 100 forCR = 4

5 ,
4
6 ,

4
7 ,

4
8 , respectively. The payload-CRC-enable bit is

set to 1 if setting payload CRC on. In our experiments, there are five bits changing rapidly when
setting different parameters. We assume these five bits as header CRC. There are three bits keeping
zero whatever the parameter setting is, and we consider them as reserved bits. Figure 13 illustrates
the header structure in the first three bytes.

We failed to find a standard CRC5 polynomial satisfying the header CRC results using the
method in Section 4.5. But thanks to the linearity of CRC algorithm, we could use a CRC ma-
trix to equivalently represent the CRC calculation.11 We denote 12 parameter bits (PL, CR, and
payload-CRC-enable bit) as a bit vector v1. We denote the five header CRC bits as a bit vector v2.
Our target is to find a matrix M satisfying v2 = M · v1. Since the value of v1 is under our control,

we can design a series of v1, say, v (1)
1 ,v

(2)
1 , . . . ,v

(12)
1 . They form a matrix V1. The relative v2 series

isv (1)
2 ,v

(2)
2 , . . . ,v

(12)
2 . They form a matrixV2. Therefore ,V2 = M ·V1. IfV1 is an identity matrix, then

M = V2.
How to make an identity matrixV1? Despite the fact that we can control the header content, we

cannot finely control the state of each bit. In our case, it seems impossible to send a packet with
v1 containing only a single “1.” However, to our surprise, the LoRa chip unexpectedly supports
sending a packet with zero payload length. The eight PL bits then become all zeros. If we disable
payload CRC and set CR = 4

5 or CR = 4
6 or CR = 4

8 , then only one code rate bit in v1 is 1. Is it
possible that only the payload-CRC-enable bit is “1”? The answer is again using the linearity of
CRC. Suppose we send two packets with zero payload andCR = 4

5 . Packet A has payload CRC but

packet B does not. Then the corresponding bit vectors are vA
1 = 000000000011,vA

2 = 01100,vB
1 =

000000000010,vB
2 = 00111. Therefore,

M · (000000000001) = M ·
(
vA

1 ⊕ vB
1

)
=

(
M · vA

1

)
⊕

(
M · vB

1

)
= vA

2 ⊕ vB
2

= 01011.

(16)

11Here we ignore the reserved bits.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:19

Fig. 14. Devices in our experiments: a USRP N210 SDR device with additional LNA, step attenuators for
measuring sensitivity in wired environments, commodity LoRa nodes, and a commodity LoRa gateway.

A similar process can be applied for PL bits. Finally, we summarize the header CRC calculation as
v2 = M · v1, where

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 1
0 1 0 0 1 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

5 IMPLEMENTATION

We implement the entire LoRa PHY in C++ on Software-Defined Radio platform GNU Radio. We
also provide a MATLAB version code for simulation purposes. We design the receiver as two sep-
arated blocks: demodulator and decoder (for the transmitter: modulator and encoder). Thus, other
new demodulation mechanisms can be integrated into our implementation in the future without
changing the decoder block. For example, if we replace the LoRa demodulator with a collision
demodulator, then we can decode collision packets directly without changing the decoding block
logic. All the experiments in Section 6 are conducted on USRP N210 in real time (we do not save the
raw baseband signals for offline processing). The USRP is connected to a laptop with Ubuntu 19.10,
i5-7200U CPU, and 8 G RAM. We use commodity LoRa devices to evaluate the performance of our
implemented LoRa PHY, including LoRa end nodes with SX1268 [25]/SX1278 [22] and Raspberry-
Pi 3B+ LoRa gateways (RPI) with SX1301 [37]. Figure 14 shows the devices used in our experiments.
The step attenuator is used in wired experiments for sensitivity measurements.

6 EVALUATION

6.1 Decoding Success Rate

We verify the effectiveness of our implemented LoRa PHY by testing if it can decode the LoRa
packets transmitted from the commodity LoRa devices. We configure a commodity LoRa device to
repeatedly transmit random packets to our implemented LoRa receiver. The ground truth of the
transmitted bytes are recorded through serial port. For a comprehensive evaluation, we tune the
LoRa transmitter with different parameters, including six SFs (7 ∼ 12), four CRs (4

5 , 4
6 , 4

7 , 4
8), and

two header modes (explicit/implicit), and with/without CRC, i.e., 6 × 4 × 2 × 2 = 96 combinations.
We use a carrier frequency of 475 MHz and a bandwidth of 250 kHz.12 The payload length is set to

12Carrier frequency and bandwidth do not affect the decoding logic.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:20 Z. Xu et al.

Fig. 15. Decoding success rate test. A total of 9, 600 packets are sent, and all code rates (4
5 , 4

6 , 4
7 , 4

8) are tested.
RPP0 cannot decode any SF11 packets. TAPP cannot decode any SF11/12 packets. Our decoder could decode
all packets. (a) Number of correctly received packets of three implementations in explicit header mode with
CRC off. (b) RPP0 does not support the configuration of {explicit header mode with CRC on, implicit header
mode with CRC off, implicit header mode with CRC on} and therefore receives none.

16 bytes. For each configuration, the transmission repeats 100 times. We place the LoRa transmitter
close to the USRP receiver, and thus all signals are received with high SNRs. Since the communi-
cation environment is ideal, any packet missing reflects the incompleteness of implementation.

The result of the experiment is shown in Figure 15. Among all the configurations, BR only
works at SF8 with implicit header, while RPP0 only supports the explicit header. Neither of these
two methods supports CRC. As the decoding processes of BR and TAPP are both computationally
expensive, they failed to work with large packet length under high transmission rate. Specifically,
BR cannot decode any packets longer than 5 bytes, and TAPP starts losing packets when the duty
cycle of the transmitter is higher than 0.5. Due to all these limitations, the overall PRR of BR only
reaches 4.2%. Besides, we can see that TAPP fails to decode any SF11/SF12 packets, and RPP0
cannot resolve SF11 packets. In summary, RPP0 covers 1,924/9,600 ≈ 20.0% packets and TAPP
covers 6,400/9,600 ≈ 66.7% packets. On the contrary, our decoder can decode all packets under
any LoRa configurations.

6.2 Sensitivity

In this section, we verify the sensitivity of our LoRa decoder. We connect a commodity LoRa
transmitter to our decoder through a 20-m RF cable with two step attenuators. Thus, we can finely
control the signal attenuation by adjusting the value of these two step attenuators.

Using the value of the step attenuators as the channel attenuation is not accurate, because the
wired links, including RF cables and connectors, also introduce attenuation leading to sensitivity
estimation errors. Therefore, before the experiment, we use a spectrum analyzer, Keysight N9322C,
to precisely estimate and calibrate the link attenuation. Then, we set the transmitting power to its
lowest, i.e., −7.9 dBm, to avoid wireless channel leakage. We experiment with the configuration of
SF8 and bandwidth of 250 kHz. Since BR fails to decode any packets longer than four bytes, we do
not compare its performance for the rest of this section. Figure 16(a) shows the sensitivity results
of four SDR decoders. The criteria of sensitivity in LoRa is defined as the minimal RSSI achieving
PRR > 90% when the payload is 32 bytes. As RPP0 and TAPP do not leverage the LoRa features for
demodulation, their PRR drops quickly as the RSSI of the received signal goes down. The sensitiv-
ities of RPP0 and TAPP are −106 and −108 dBm, respectively. In contrast, the performance of our
implemented decoder remains stable and achieves a sensitivity as low as −126 dBm.

We further conduct an experiment under a larger SF, i.e., SF12. The result is shown in
Figure 16(b). Our measured sensitivity is −142 dBm, which approaches the optimal sensitivity
of LoRa. Interestingly, we find that the sensitivity of the RPI gateway is only −139.5 dBm. That is
because the RPI gateway does not adopt the optimal design of the LoRa gateway. Therefore, our
decoder has better performance than it.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:21

Fig. 16. Sensitivity tests of different decoders with (a) 10-byte payload, SF8, BW = 250 kHz and (b) 32-byte
payload, SF12, BW = 125 kHz.

Fig. 17. Zero-padding ratio influence on (a) CPA and (b) FPA with k = 8.

6.3 Influence of Zero-Padding

Then we verify the validity of our proposed peak refinement strategy, which improves the fre-
quency resolution by zero-padding. We use the same experimental setup as Section 6.2, evaluating
both the FPA and CPA methods. Figure 17 shows the receiver performance under different levels of
RSSI and zero-padding ratios. For both FPA and CPA, we see that PRR increases with higher zero-
padding ratio r . The performance improvement for r from 1 to 4 is observable, while for r ≥ 4 the
performance improvement becomes negligible.

6.4 Encoder Test

In this section, we present the evaluation of our implemented LoRa encoder, which is a reverse
version of the LoRa decoder. The only difference in encoder implementation comparing to the
decoder is the redundant bytes for filling the last 4

CR
symbols. Though these bytes seem fixed in

LoRa chip implementation, they are meaningless on the receiver side. In our implementation, we
pad zeros to fill the left bytes. When the encoder is up, it opens a UDP port and waits for data.
We send 16 bytes to the encoder process through a python script. After that, the generated LoRa
signal is sent from USRP to a LoRa end device. We check the serial port outputs from the device to
see if the data are correctly transferred. We use different parameters (i.e., different SFs, CRs, and

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:22 Z. Xu et al.

Fig. 18. LoRa chip’s PRR when receiving specially constructed LoRa signals with different values of phase
misalignment.

bandwidth) for sending data. Besides, for each parameter setting, the transmission is repeated 100
times. The final results show that 9,600 packets sent from our encoder could all be successfully
decoded, which from another direction reveals that our analysis and implementation are reliable.

6.5 Influence of Phase Misalignment

In Section 3, we propose FPA and CPA for LoRa demodulation. We prove that the performance of
the two methods is close to the IDEAL demodulation theoretically. That is because they are resis-
tant to phase jitter caused by non-perfect hardware and multi-path. So what is the actual demodu-
lation method implemented in commodity LoRa chip? Does it adopt FPA and CPA? Interestingly,
we find that the demodulation algorithm used in the LoRa chip is not as good as FPA or CPA. We
construct LoRa packets containing specially designed five bytes. As a result, the four consecutive
data symbols are the same with fstar t = 0, i.e., a symbol with a sharp frequency drop in the middle.
Such a symbol is most vulnerable to phase misalignment between the two chirp segments. Before
sending the packet via SDR, we manually add phase offset on the two segments. Our receiver us-
ing FPA and CPA are resistant to phase misalignment and their PPR is 100%. However, we find
that the LoRa gateway faces frequent packet loss when receiving packets with significant phase
misalignment. Figure 18 shows PRR with respect to phase misalignment. Its PRR is nearly 100%
when the phase offset is between (− π

2 ,
π
2). But it drops quickly when the phase offset becomes

large. The result means the LoRa chip adopts a weaker demodulation method than our methods.
In other words, the commodity LoRa chip is vulnerable to “phase misalignment attack.” Despite
the fact that this kind of “attack” is hard to accomplish, any small defects are worth noting in the
security area. We conjecture that the LoRa chip may compensate a fixed phase offset Δφ during
the demodulation process, e.g., it estimates Δφ from the preamble and applies Δφ to the following
data symbols. If Δφ changes, then the LoRa chip fails to demodulate the packet correctly. Thus,
the PRR drops when the phase offset changes. Of course, we do not know the internal implemen-
tation in LoRa chip unless Semtech publicly releases the documents. But, in summary, the LoRa
chip demodulation implementation is weaker than our FPA and CPA method.

6.6 Outdoor Test

We finally compare our decoder with a commodity RPI gateway in a real-world environment. We
place the receiver outside a window on the second floor. We carefully select the locations of the
transmitters, assuring that there is no Line-of-Sight path between the transmitter and the receivers,
which reflects the common situation of LoRa communication. The transmitter repeatedly sends a
32-byte packet in explicit header mode with setting SF12, BW = 125 kHz, CR = 4

8 , and CRC enabled.
We lift the transmitter to 1.8 m in height with a tripod. Figure 19 shows the experiment setting
mentioned above. Figure 20 shows PRR in different communication distances. Set PRR = 95% as
a bar, our decoder supports a communication range as long as 3,600 m, while the commodity
RPI gateway only reaches the maximum of 2,800 m. An interesting detail is the PRR fluctuation
of RPI gateway in 2,400 m. We guess that the reason is the phase offset caused by the complex

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:23

Fig. 19. Deployment of the transmitter and receiver. The transmitter is placed on a 1.8-m tripod.

Fig. 20. Outdoor communication range experiments.

environment. As mentioned in Section 6.5, the commodity LoRa chip is vulnerable to phase
misalignment problem. Therefore our decoder seems more reliable in outdoor communications.

7 RELATED WORK

Wireless protocol reverse engineering. The rapid development of Internet of Things brings a
plurality of proprietary protocols. The endogenous driving force to develop closed protocols in-
stead of using existed standard protocols comes from many reasons. For example, a proprietary
protocol could save license fees for the Internet of Things manufacturers, or the new protocol pro-
vides specific functions targeting at specific application and embedded device. However, deviat-
ing from standard specifications sometimes paves the way for attackers, since the manufacturers
might introduce some insecure designs. Meanwhile, these protocols are usually undocumented
and closed to the public, which attracts network researchers to reverse engineer them, including
Cryptographic RFID [41, 42, 53], In-Car wireless network [43], Apple Wireless Direct Link ad hoc
protocol [44, 45], and so on. The reverse engineering on these protocols deepens our understand-
ing of existing network and reveal flaws in protocol design. Our work also aims to give other
researchers a more complete understanding of the LoRa physical layer and provide a better tool
for analyzing the LoRa network.

Works related to LoRa PHY. LoRa provides a unique modulation offering long range,
which is appealing in many applications. Traditional backscatter technology suffers from the
communication range, which is limited to meter level. Recent works on backscatter combining
LoRa [12, 47, 52] improve the range to the kilometer level. Meanwhile, adopting LoRa-like
modulation, Netcatter [13] supports 256 current backscatter transmissions. Due to low data rate
and large coverage characteristics of LPWAN, the network capacity is relatively small [46], which
results in crucial collision problems. Many efforts have been made to improve the LoRa network
throughput. Other kinds of representative work are collision decoding [1–4, 9, 10, 27, 49] and
weak signal decoding [50, 51]. They mainly rely on the uniqueness of LoRa PHY demodulation to

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

64:24 Z. Xu et al.

separate chirps to difference packets. Our work gives a deeper understanding of LoRa PHY and
will boost LoRa PHY-related research.

8 CONCLUSION

This article presents a comprehensive understanding of LoRa demodulation and decoding and re-
veals fundamental reasons for the performance gap between existing works and commodity LoRa.
This work is the first complete LoRa PHY implementation with a provable performance guarantee
to the black-box commodity LoRa chip. We enhance the demodulation to achieve extremely low
SNR (−20 dB) decoding with a theoretical performance guarantee. Also, we derive the order and
parameters of decoding operations, including dewhitening, error correction, deinterleaving, and
so on, by leveraging officially known facts of LoRa and packet manipulation. Moreover, we im-
plement the first complete real-time SDR LoRa PHY on the GNU Radio platform. The evaluation
shows that our method can achieve (1) a 100% decoding success rate while existing methods can
support at most 66.7%; (2) −142-dBm sensitivity, which is the limit of the commodity LoRa; and
(3) a 3,600 m communication range in the urban area, similarly to commodity LoRa under the same
setting.

APPENDIX

SER Calculation Model. Suppose the signal is transmitted through an AWGN channel, where the
noise follows the complex Gaussian distribution, i.e., CN (0,σ 2). Then, after dechirping, the noise
distribution turns to CN (0,Mσ 2), where M is the number of samples within the demodulation
window. The maximal height of noise has a small variance and can be approximated as cσ , where
c is a constant. Suppose the data peak height hd follows Gaussian distributionN (μd ,σ

2
d

). We have

SER = P (hd < cσ) = Q

(
cσ − μd

σd

)
, (18)

where Q is the tail function of the standard normal distribution. Denote SNR as Γ = A2

σ 2 , where A
is the signal amplitude.

IDEAL. Since multiplying and FFT are linear, the complex data peak in IDEAL follows complex
Gaussian distribution CN (h,Mσ 2), where h = MA. The peak height follows Rice distribution,

which can be approximated as Gaussian distributionN (μ1,σ
2
1), where μ1 = σ

√
Mπ

2 L 1
2

(− h2

2Mσ 2) and

σ 2
1 = 2Mσ 2+h2−μ2

1. L 1
2
(·) is Laguerre polynomial. According to Reference [47], the maximal height

of other M − 1 noise height is approximately
√

2Mσ 2HM−1 = c1σ , where Hl =
∑l

i=1
1
i

depicts the lth
harmonic number. Taking μ1, σ1, and c1 into Equation (18), we derive the SER of IDEAL as follows;

SER1 = Q
�

�
√

2HM−1 −
√

π
2 L 1

2
(−MΓ

2)√
2 +MΓ − π

2 L
2
1
2

(−MΓ
2)

���� . (19)

FPA. If the phase compensation θ = 0, then the frequency domain after adding equals IDEAL.
Shifting the noise by θ does not affect the zero-mean noise distribution. Therefore, the noise distri-
bution after adding can still be considered as CN (0,Mσ 2), which means the maximal noise height
is c2σ , where c2 = c1. The data peak in FPA follows CN (h1 + e

jθh2,Mσ 2), where h1 (h2) is the first
(second) chirp segment height and h1 + h2 = h. Let h3 = |h1 + e jθh2 |. The peak height follows

Rice distribution, which can be approximated as N (μ2,σ
2
2), where μ2 = σ

√
Mπ

2 L 1
2
(− h2

3

2Mσ 2),σ 2
2 =

2Mσ 2 +h2
3 − μ2

2. SER of FPA is related to the symbol transmitted, and here we simplify the sending

symbol with h1 = h2 =
h
2 . The best case is that θ = 0 and h3 = h. The worst case is that |θ | = π

k
and

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:25

h3 = h cos(π
2k

). We consider the average of them h · 1+cos(π

2k
)

2 = h cos2 (π
4k

) as final h3. Therefore,
the SER of FPA can be approximated as

SER2 = Q

�

�
√

2HM−1 −
√

π
2 L 1

2

(
−MΓ

2 cos4 (π
4k

)
)

√
2 +MΓ cos4

(
π
4k

)
− π

2 L
2
1
2

(
−MΓ

2 cos4
(

π
4k

))
�������
. (20)

CPA. The two separated data peak heights in CPA follow Rice distribution, respectively. The
sum of them have the approximated distribution N (μ3,σ

2
3), where μ3 = μ ′3 + μ ′′3 ,σ

2
3 = 2Mσ 2 +

h2
1 + h2

2 − (μ ′3)2 − (μ ′′3)2, μ ′3 = σ
√

Mπ h1

2h
L 1

2
(− h1h

2Mσ 2), μ ′′3 = σ
√

Mπ h2

2h
L 1

2
(− h2h

2Mσ 2). The noise peak

height follows Rayleigh distribution. Denote the absolute value summation of two part of noise as
Yi (i = 1, 2, . . . ,M − 1). Yi approximately follows N (μY ,σ

2
Y), where

μY =
(√

h1 +
√
h2

) √
Mπ

2h
σ ,σ 2

Y =
4 − π

2
Mσ 2. (21)

Let S = maxi=1,2, ...,M−1 Yi . By Jensen’s inequality [48],

etE(S) ≤ E
(
etS

)
= E

(
max

i
etYi

)

≤
M−1∑
i=1

E
(
etYi

)
= (M − 1)eμY t+ 1

2 σ 2
Y

t 2

,
(22)

where the last equality follows from the definition of the Gaussian moment generating function.
Taking the logarithm on both sides of inequality (22), we have

E(S) ≤ ln(M − 1)

t
+ μY +

σ 2
Y t

2
. (23)

For t > 0, according to the inequality of arithmetic and geometric means, we know

E(S) ≤ μY +
√

2 ln(M − 1)σY = c3σ , (24)

where c3 = (
√
h1 +
√
h2)

√
Mπ
2h
+

√
(4 − π)M ln(M − 1). We use upper bound of E(S) to estimate the

max noise peak height in CPA method. Consider the situation h1 = h2 =
h
2 ; we have

SER3 = Q
�

�
√
π +

√
(4 − π) ln(M − 1) −

√
πL 1

2
(−MΓ

4)√
2 + MΓ

2 −
π
2 L

2
1
2

(−MΓ
4)

���� . (25)

REFERENCES

[1] Shuai Tong, Zhenqiang Xu, and Jiliang Wang. 2020. CoLoRa: Enabling multi-packet reception in LoRa. In Proceedings

of the IEEE International Conference on Computer Communications (INFOCOM’20). IEEE, 2303–2311.

[2] Xianjin Xia, Yuanqing Zheng, Tao Gu. 2020. FTrack: Parallel decoding for LoRa transmissions. IEEE/ACM Trans. Netw.

28, 6 (2020), 2573–2586. https://doi.org/10.1109/TNET.2020.3018020

[3] Zhenqiang Xu, Shuai Tong, Pengjin Xie, and Jiliang Wang. 2020. FlipLoRa: Resolving collisions with up-down

quasi-orthogonality. In Proceedings of the IEEE International Conference on Sensing, Communication and Networking

(SECON’20).

[4] Zhe Wang, Linghe Kong, Kangjie Xu, Liang He, Kaishun Wu, and Guihai Chen. 2020. Online concurrent transmissions

at LoRa gateway. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’20).

IEEE, 2331–2340.

[5] Wenju Zhao, Shengwei Lin, Jiwen Han, Rongtao Xu, and Lu Hou. 2017. Design and implementation of smart irrigation

system based on LoRa. In Proceedings of the IEEE Globecom Workshops (GC Wkshps’17). IEEE, 1–6.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

https://doi.org/10.1109/TNET.2020.3018020

64:26 Z. Xu et al.

[6] Irfan Fachrudin Priyanta, Frank Golatowski, Thorsten Schulz, and Dirk Timmermann. 2019. Evaluation of LoRa tech-

nology for vehicle and asset tracking in smart harbors. In Proceedings of the 45th Annual Conference of the IEEE Indus-

trial Electronics Society (IECON’19), Vol. 1. IEEE, 4221–4228.

[7] Davide Magrin, Marco Centenaro, and Lorenzo Vangelista. 2017. Performance evaluation of LoRa networks in a smart

city scenario. In Proceedings of the IEEE International Conference on Communications (ICC’17). IEEE, 1–7.

[8] Umber Noreen, Ahcène Bounceur, and Laurent Clavier. 2017. A study of LoRa low power and wide area network

technology. In Proceedings of the International Conference on Advanced Technologies for Signal and Image Processing

(ATSIP’17). IEEE, 1–6.

[9] Rashad Eletreby, Diana Zhang, Swarun Kumar, and Osman Yağan. 2017. Empowering low-power wide area net-

works in urban settings. In Proceedings of the ACM Conference of the Special Interest Group on Data Communication

(SIGCOMM’17).

[10] Shuai Tong, Jiliang Wang, and Yunhao Liu. 2020. Combating packet collisions using non-stationary signal scaling in

LPWANs. In Proceedings of the ACM International Conference on Mobile Systems, Applications, and Services (MobiSys’20).

[11] Yao Peng, Longfei Shangguan, Yue Hu, Yujie Qian, Xianshang Lin, Xiaojiang Chen, Dingyi Fang, and Kyle Jamieson.

2018. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Proceedings of the ACM Con-

ference of the Special Interest Group on Data Communication (SIGCOMM’18).

[12] Vamsi Talla, Mehrdad Hessar, Bryce Kellogg, Ali Najafi, Joshua R. Smith, and Shyamnath Gollakota. 2017. LoRa

backscatter: Enabling the vision of ubiquitous connectivity. Proc. ACM Interact. Mobile Wear. Ubiq. Technol. 1, 3 (2017),

1–24.

[13] Mehrdad Hessar, Ali Najafi, and Shyamnath Gollakota. 2019. Netscatter: Enabling large-scale backscatter networks.

In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation (NSDI’19). 271–284.

[14] Adwait Dongare, Revathy Narayanan, Akshay Gadre, Anh Luong, Artur Balanuta, Swarun Kumar, Bob Iannucci, and

Anthony Rowe. 2018. Charm: Exploiting geographical diversity through coherent combining in low-power wide-area

networks. In Proceedings of the 17th ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN’18). IEEE, 60–71.

[15] Akshay Gadre, Revathy Narayanan, Anh Luong, Anthony Rowe, Bob Iannucci, and Swarun Kumar. 2020. Frequency

configuration for low-power wide-area networks in a heartbeat. In Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI’20).

[16] Pieter Robyns, Peter Quax, Wim Lamotte, and William Thenaers. 2018. A multi-channel software decoder for the

LoRa modulation scheme. In Proceedings of the International Conference on Internet of Things, Big Data and Security

(IoTBDS’18).

[17] Matthew Knight and Balint Seeber. 2016. Decoding LoRa: Realizing a modern LPWAN with SDR. In Proceedings of the

GNU Radio Conference.

[18] Joachim Tapparel, Orion Afisiadis, Paul Mayoraz, Alexios Balatsoukas-Stimming, and Andreas Burg. 2020. An open-

source LoRa physical layer prototype on GNU radio. In Proceedings of the IEEE 21st International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC’20). 1–5. DOI:http://dx.doi.org/10.1109/SPAWC48557.2020.

9154273

[19] Josh Blum. 2016. LoRa modem with LimeSDR. Retrieved from https://myriadrf.org/news/lora-modem-limesdr/.

[20] RevSpace. DecodingLoRa. Retrieved from https://revspace.nl/DecodingLora.

[21] Alexandre Marquet, Nicolas Montavont, and Georgios Z. Papadopoulos. 2019. Investigating theoretical performance

and demodulation techniques for LoRa. In Proceedings of the IEEE IEEE International Symposium on a World of Wireless,

Mobile and Multimedia Networks (WoWMoM’19). IEEE, 1–6.

[22] Semtech. 2020. Data Sheet SX1276/77/78/79, Rev. 7.

[23] LoRaWAN Specification v1.1. Retrieved from https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/.

[24] Symphony Link. Retrieved from https://www.link-labs.com/symphony.

[25] Semtech. 2019. Data Sheet SX1268, Rev. 1.1.

[26] Olivier Bernard, André Seller, and Nicolas Sornin. 2014. Low power long range transmitter. Patent EP 2 763 321 A1.

[27] Xiong Wang, Linghe Kong, Liang He, and Guihai Chen. 2019. mLoRa: A multi-packet reception protocol in LoRa

networks. In Proceedings of the IEEE International Conference on Network Protocols (ICNP’19). IEEE, 1–11.

[28] Rajalakshmi Nandakumar, Vikram Iyer, and Shyamnath Gollakota. 2018. 3D Localization for sub-centimeter sized

devices. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys’18).

[29] Yinghui Li, Jing Yang, and Jiliang Wang. 2020. DyLoRa: Towards energy efficient dynamic LoRa transmission control.

In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM’20). IEEE, 2312–2320.

[30] LoRaMac-node. Retrieved from https://github.com/Lora-net/LoRaMac-node.

[31] SX1302 LoRa Gateway project. Retrieved from https://github.com/Lora-net/sx1302_hal.

[32] ChirpStack. Retrieved from https://www.chirpstack.io/.

[33] LoRaWAN Server. Retrieved from https://github.com/gotthardp/lorawan-server.

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

http://dx.doi.org/10.1109/SPAWC48557.2020.9154273
https://myriadrf.org/news/lora-modem-limesdr/
https://revspace.nl/DecodingLora
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://www.link-labs.com/symphony
https://github.com/Lora-net/LoRaMac-node
https://github.com/Lora-net/sx1302_hal
https://www.chirpstack.io/
https://github.com/gotthardp/lorawan-server

From Demodulation to Decoding: Toward Complete LoRa PHY Understanding 64:27

[34] Charm Decoder. Retrieved from https://github.com/WiseLabCMU/charm-decoder.

[35] Mehrdad Hessar, Ali Najafi, Vikram Iyer, and Shyamnath Gollakota. 2020. TinySDR: Low-power SDR platform for

over-the-air programmable IoT testbeds. In Proceedings of the USENIX Symposium on Networked Systems Design and

Implementation (NSDI’20). 1031–1046.

[36] TinySDR. Retrieved from https://github.com/uw-x/tinysdr.

[37] Semtech. 2017. Data Sheet SX1301, V2.4.

[38] Nadia Ben Atti, Gema M. Diaz-Toca, and Henri Lombardi. 2006. The berlekamp-massey algorithm revisited. Applic.

Algebr. Eng. Commun. Comput. 17, 1 (2006), 75–82.

[39] Wikipedia. LFSR. https://en.wikipedia.org/wiki/Linear-feedback_shift_register.

[40] Ross Williams et al. 1993. A painless guide to CRC error detection algorithms. https://zlib.net/crc_v3.txt.

[41] P. Fraga-Lamas and T. M. Fernández-Caramés. 2017. Reverse engineering the communications protocol of an RFID

public transportation card. In Proceedings of the IEEE International Conference on RFID (RFID’17). 30–35.

[42] Karsten Nohl, David Evans, Starbug Starbug, and Henryk Plötz. 2008. Reverse-engineering a cryptographic RFID tag..

In Proceedings of the USENIX Security Symposium, Vol. 28.

[43] Ishtiaq Rouf, Robert D. Miller, Hossen A. Mustafa, Travis Taylor, Sangho Oh, Wenyuan Xu, Marco Gruteser, Wade

Trappe, and Ivan Seskar. 2010. Security and privacy vulnerabilities of in-car wireless networks: A tire pressure moni-

toring system case study. In Proceedings of the USENIX Security Symposium, Vol. 10.

[44] Milan Stute, David Kreitschmann, and Matthias Hollick. 2018. One billion apples’ secret sauce: Recipe for the Apple

wireless direct link ad hoc protocol. In Proceedings of the 24th Annual International Conference on Mobile Computing

and Networking. 529–543.

[45] Milan Stute, Sashank Narain, Alex Mariotto, Alexander Heinrich, David Kreitschmann, Guevara Noubir, and Matthias

Hollick. 2019. A billion open interfaces for Eve and Mallory: MitM, DoS, and tracking attacks on iOS and macOS

through Apple wireless direct link. In Proceedings of the USENIX Security Symposium. 37–54.

[46] Branden Ghena, Joshua Adkins, Longfei Shangguan, Kyle Jamieson, Philip Levis, and Prabal Dutta. 2019. Challenge:

Unlicensed LPWANs are not yet the path to ubiquitous connectivity. In Proceedings of the ACM Annual International

Conference on Mobile Computing and Networking (MobiCom’19). 1–12.

[47] Tallal Elshabrawy and Joerg Robert. 2018. Closed-form approximation of LoRa modulation BER performance. IEEE

Commun. Lett. (2018).

[48] Pascal Massart. 2007. Concentration Inequalities and Model Selection, Vol. 6. Springer.

[49] Qian Chen and Jiliang Wang. 2021. AlignTrack: Push the limit of LoRa collision decoding. IEEE 29th International

Conference on Network Protocols (ICNP’21), 1–11. DOI:10.1109/ICNP52444.2021.9651985

[50] Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang Wang, and

Yunhao Liu. 2021. NELoRa: Towards ultra-low SNR LoRa communication with neural-enhanced demodulation. In

Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, 56–68.

[51] Shuai Tong, Zilin Shen, Yunhao Liu, and Jiliang Wang. 2021. Combating link dynamics for reliable lora connection

in urban settings. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking,

642–655.

[52] Jinyan Jiang, Zhenqiang Xu, Fan Dang, and Jiliang Wang. 2021. Long-range ambient LoRa backscatter with parallel

decoding. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, 684–696.

[53] Qianwen Miao, Fu Xiao, Haiping Huang, Lijuan Sun, and Ruchuan Wang. 2019. Smart attendance system based on

frequency distribution algorithm with passive RFID tags. Tsinghua Science and Technology 25, 2 (2019), 217–226.

Received 24 February 2022; revised 19 May 2022; accepted 5 June 2022

ACM Transactions on Sensor Networks, Vol. 18, No. 4, Article 64. Publication date: December 2022.

https://github.com/WiseLabCMU/charm-decoder
https://github.com/uw-x/tinysdr
https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://zlib.net/crc_v3.txt
https://doi.org/10.1109/ICNP52444.2021.9651985

